1,240 research outputs found
Herschel/PACS far-infrared photometry of two z>4 quasars
We present Herschel far-infrared (FIR) observations of two sub-mm bright
quasars at high redshift: SDSS J1148+5251 (z=6.42) and BR 1202-0725 (z=4.69)
obtained with the PACS instrument. Both objects are detected in the PACS
photometric bands. The Herschel measurements provide additional data points
that constrain the FIR spectral energy distributions (SEDs) of both sources,
and they emphasise a broad range of dust temperatures in these objects. For
lambda_rest ~< 20mu, the two SEDs are very similar to the average SEDs of
quasars at low redshift. In the FIR, however, both quasars show excess emission
compared to low-z QSO templates, most likely from cold dust powered by vigorous
star formation in the QSO host galaxies. For SDSS J1148+5251 we detect another
object at 160mu with a distance of ~10 arcseconds from the QSO. Although no
physical connection between the quasar and this object can be shown with the
available data, it could potentially confuse low-resolution measurements, thus
resulting in an overestimate of the FIR luminosity of the z=6.42 quasar.Comment: 4 pages, 3 figures, accepted for publication in the A&A special issue
on Hersche
Breaking the Waves: Modelling the Potential Impact of Public Health Measures to Defer the Epidemic Peak of Novel Influenza A/H1N1
BACKGROUND: On June 11, 2009, the World Health Organization declared phase 6 of the novel influenza A/H1N1 pandemic. Although by the end of September 2009, the novel virus had been reported from all continents, the impact in most countries of the northern hemisphere has been limited. The return of the virus in a second wave would encounter populations that are still nonimmune and not vaccinated yet. We modelled the effect of control strategies to reduce the spread with the goal to defer the epidemic wave in a country where it is detected in a very early stage. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a deterministic SEIR model using the age distribution and size of the population of Germany based on the observed number of imported cases and the early findings for the epidemiologic characteristics described by Fraser (Science, 2009). We propose a two-step control strategy with an initial effort to trace, quarantine, and selectively give prophylactic treatment to contacts of the first 100 to 500 cases. In the second step, the same measures are focused on the households of the next 5,000 to 10,000 cases. As a result, the peak of the epidemic could be delayed up to 7.6 weeks if up to 30% of cases are detected. However, the cumulative attack rates would not change. Necessary doses of antivirals would be less than the number of treatment courses for 0.1% of the population. In a sensitivity analysis, both case detection rate and the variation of R0 have major effects on the resulting delay. CONCLUSIONS/SIGNIFICANCE: Control strategies that reduce the spread of the disease during the early phase of a pandemic wave may lead to a substantial delay of the epidemic. Since prophylactic treatment is only offered to the contacts of the first 10,000 cases, the amount of antivirals needed is still very limited
Post-treatment three-dimensional voxel-based dosimetry after Yttrium-90 resin microsphere radioembolization in HCC
BACKGROUND: Post-therapy [(90)Y] PET/CT-based dosimetry is currently recommended to validate treatment planning as [(99m)Tc] MAA SPECT/CT is often a poor predictor of subsequent actual [(90)Y] absorbed dose. Treatment planning software became available allowing 3D voxel dosimetry offering tumour-absorbed dose distributions and dose-volume histograms (DVH). We aim to assess dose–response effects in post-therapy [(90)Y] PET/CT dosimetry in SIRT-treated HCC patients for predicting overall and progression-free survival (OS and PFS) and four-month follow-up tumour response (mRECIST). Tumour-absorbed dose and mean percentage of the tumour volume (V) receiving ≥ 100, 150, 200, or 250 Gy and mean minimum absorbed dose (D) delivered to 30%, 50%, 70%, and 90% of tumour volume were calculated from DVH’s. Depending on the mean tumour -absorbed dose, treated lesions were assigned to a < 120 Gy or ≥ 120 Gy group. RESULTS: Thirty patients received 36 SIRT treatments, totalling 43 lesions. Median tumour-absorbed dose was significantly different between the ≥ 120 Gy (n = 28, 207 Gy, IQR 154–311 Gy) and < 120 Gy group (n = 15, 62 Gy, IQR 49–97 Gy, p <0 .01). Disease control (DC) was found more frequently in the ≥ 120 Gy group (79%) compared to < 120 Gy (53%). Mean tumour-absorbed dose optimal cut-off predicting DC was 131 Gy. Tumour control probability was 54% (95% CI 52–54%) for a mean tumour-absorbed dose of 120 Gy and 90% (95% CI 87–92%) for 284 Gy. Only D30 was significantly different between DC and progressive disease (p = 0.04). For the ≥ 120 Gy group, median OS and PFS were longer (median OS 33 months, [range 8–33 months] and median PFS 23 months [range 4–33 months]) than the < 120 Gy group (median OS 17 months, [range 5–33 months] and median PFS 13 months [range 1–33 months]) (p < 0.01 and p = 0.03, respectively). CONCLUSIONS: Higher 3D voxel-based tumour-absorbed dose in patients with HCC is associated with four-month DC and longer OS and PFS. DVHs in [(90)Y] SIRT could play a role in evaluative dosimetry
Forbush decrease observed by SEVAN particle detector network on November 4, 2021
On November 3-4 2021, an interplanetary coronal mass injection (ICME) hits
the magnetosphere, sparking a strong G3-class geomagnetic storm and auroras as
far south as California and New Mexico. All detectors of the SEVAN network
registered a Forbush decrease (FD) of 5-10 percentdeep in 1 minute time series
of count rates. We present the results of a comparison of Fd registered on
mountain altitudes on Aragats (Armenia), Lomnicky Stit (Slovakia), Musala
(Bulgaria), and at sea level DESY (Hamburg, Germany), and in Mileshovka,
Czechia. We present as well purity and barometric coefficients of different
coincidences of SEVAN detector layers on Aragats. We demonstrate disturbances
of the near-surface electric (NSEF) and geomagnetic fields at the arrival of
the ICME on Earth
Визначення кількості рослинних антиоксидантів для захисту гірких хмелевих речовин від окисної деструкції
Досліджено кінетику окиснення гірких речовин водного розчину екстракту хмелю у прискорених умовах з різною концентрацією антиоксидантів із рослинної сировини. Визначено ефективну концентрацію антиоксидантів із кори дубу, трави звіробою та трави м'яти.Kinetics of bitter matters in aquatic solution of hope extract in speed-up terms with different concentration of antioxidants from the digister are investigated. Certainly effective concentration of antioxidants from the bark oak, st-john's-wort herbares and mint herbares are determinated
Warm Dust and Spatially Variable PAH Emission in the Dwarf Starburst Galaxy NGC 1705
We present Spitzer observations of the dwarf starburst galaxy NGC 1705
obtained as part of SINGS. The galaxy morphology is very different shortward
and longward of ~5 microns: short-wavelength imaging shows an underlying red
stellar population, with the central super star cluster (SSC) dominating the
luminosity; longer-wavelength data reveals warm dust emission arising from two
off-nuclear regions offset by ~250 pc from the SSC. These regions show little
extinction at optical wavelengths. The galaxy has a relatively low global dust
mass (~2E5 solar masses, implying a global dust-to-gas mass ratio ~2--4 times
lower than the Milky Way average). The off-nuclear dust emission appears to be
powered by photons from the same stellar population responsible for the
excitation of the observed H Alpha emission; these photons are unassociated
with the SSC (though a contribution from embedded sources to the IR luminosity
of the off-nuclear regions cannot be ruled out). Low-resolution IRS
spectroscopy shows moderate-strength PAH emission in the 11.3 micron band in
the eastern peak; no PAH emission is detected in the SSC or the western dust
emission complex. There is significant diffuse 8 micron emission after scaling
and subtracting shorter wavelength data; the spatially variable PAH emission
strengths revealed by the IRS data suggest caution in the interpretation of
diffuse 8 micron emission as arising from PAH carriers alone. The metallicity
of NGC 1705 falls at the transition level of 35% solar found by Engelbracht and
collaborators; the fact that a system at this metallicity shows spatially
variable PAH emission demonstrates the complexity of interpreting diffuse 8
micron emission. A radio continuum non-detection, NGC 1705 deviates
significantly from the canonical far-IR vs. radio correlation. (Abridged)Comment: ApJ, in press; please retrieve full-resolution version from
http://www.astro.wesleyan.edu/~cannon/pubs.htm
Dynamics of Fluid Vesicles in Oscillatory Shear Flow
The dynamics of fluid vesicles in oscillatory shear flow was studied using
differential equations of two variables: the Taylor deformation parameter and
inclination angle . In a steady shear flow with a low viscosity
of internal fluid, the vesicles exhibit steady tank-treading
motion with a constant inclination angle . In the oscillatory flow
with a low shear frequency, oscillates between or
around for zero or finite mean shear rate ,
respectively. As shear frequency increases, the vesicle
oscillation becomes delayed with respect to the shear oscillation, and the
oscillation amplitude decreases. At high with , another limit-cycle oscillation between and
is found to appear. In the steady flow, periodically rotates
(tumbling) at high , and and the vesicle shape
oscillate (swinging) at middle and high shear rate. In the
oscillatory flow, the coexistence of two or more limit-cycle oscillations can
occur for low in these phases. For the vesicle with a fixed shape,
the angle rotates back to the original position after an oscillation
period. However, it is found that a preferred angle can be induced by small
thermal fluctuations.Comment: 11 pages, 13 figure
Extragalactic Results from the Infrared Space Observatory
More than a decade ago the IRAS satellite opened the realm of external
galaxies for studies in the 10 to 100 micron band and discovered emission from
tens of thousands of normal and active galaxies. With the 1995-1998 mission of
the Infrared Space Observatory the next major steps in extragalactic infrared
astronomy became possible: detailed imaging, spectroscopy and
spectro-photometry of many galaxies detected by IRAS, as well as deep surveys
in the mid- and far- IR. The spectroscopic data reveal a wealth of detail about
the nature of the energy source(s) and about the physical conditions in
galaxies. ISO's surveys for the first time explore the infrared emission of
distant, high-redshift galaxies. ISO's main theme in extragalactic astronomy is
the role of star formation in the activity and evolution of galaxies.Comment: 106 pages, including 17 figures. Ann.Rev.Astron.Astrophys. (in
press), a gzip'd pdf file (667kB) is also available at
http://www.mpe.mpg.de/www_ir/preprint/annrev2000.pdf.g
The Far-Infrared Spectral Energy Distributions of X-ray-selected Active Galaxies
[Abridged] We present ISO far-infrared (IR) observations of 21 hard X-ray
selected AGN from the HEAO-1 A2 sample. We compare the far-IR to X-ray spectral
energy distributions (SEDs) of this sample with various radio and optically
selected AGN samples. The hard-X-ray selected sample shows a wider range of
optical/UV shapes extending to redder near-IR colors. The bluer objects are
Seyfert 1s, while the redder AGN are mostly intermediate or type 2 Seyferts.
This is consistent with a modified unification model in which the amount of
obscuring material increases with viewing angle and may be clumpy. Such a
scenario, already suggested by differing optical/near-IR spectroscopic and
X-ray AGN classifications, allows for different amounts of obscuration of the
continuum emission in different wavebands and of the broad emission line region
which results in a mixture of behaviors for AGN with similar optical emission
line classifications. The resulting limits on the column density of obscuring
material through which we are viewing the redder AGN are 100 times lower than
for the standard optically thick torus models. The resulting decrease in
optical depth of the obscuring material allows the AGN to heat more dust at
larger radial distances. We show that an AGN-heated, flared, dusty disk with
mass 10^9 solar and size of few hundred pc is able to generate optical-far-IR
SEDs which reproduce the wide range of SEDs present in our sample with no need
for an additional starburst component to generate the long-wavelength, cooler
part of the IR continuum.Comment: 40 pages, 14 figures, accepted for publication in Astrophysical
Journal, V. 590, June 10, 200
- …