972 research outputs found

    Differential flow in heavy-ion collisions at balance energies

    Full text link
    A strong differential transverse collective flow is predicted for the first time to occur in heavy-ion collisions at balance energies. We also give a novel explanation for the disappearance of the total transverse collective flow at the balance energies. It is further shown that the differential flow especially at high transverse momenta is a useful microscope capable of resolving the balance energy's dual sensitivity to both the nuclear equation of state and in-medium nucleon-nucleon cross sections in the reaction dynamics.Comment: Phys. Rev. Lett. (1999) in pres

    Condensation of Ideal Bose Gas Confined in a Box Within a Canonical Ensemble

    Full text link
    We set up recursion relations for the partition function and the ground-state occupancy for a fixed number of non-interacting bosons confined in a square box potential and determine the temperature dependence of the specific heat and the particle number in the ground state. A proper semiclassical treatment is set up which yields the correct small-T-behavior in contrast to an earlier theory in Feynman's textbook on Statistical Mechanics, in which the special role of the ground state was ignored. The results are compared with an exact quantum mechanical treatment. Furthermore, we derive the finite-size effect of the system.Comment: 18 pages, 8 figure

    Off shell behaviour of the in medium nucleon-nucleon cross section

    Full text link
    The properties of nucleon-nucleon scattering inside dense nuclear matter are investigated. We use the relativistic Brueckner-Hartree-Fock model to determine on-shell and half off-shell in-medium transition amplitudes and cross sections. At finite densities the on-shell cross sections are generally suppressed. This reduction is, however, less pronounced than found in previous works. In the case that the outgoing momenta are allowed to be off energy shell the amplitudes show a strong variation with momentum. This description allows to determine in-medium cross sections beyond the quasi-particle approximation accounting thereby for the finite width which nucleons acquire in the dense nuclear medium. For reasonable choices of the in-medium nuclear spectral width, i.e. Γ40\Gamma\leq 40 MeV, the resulting total cross sections are, however, reduced by not more than about 25% compared to the on-shell values. Off-shell effect are generally more pronounced at large nuclear matter densities.Comment: 31 pages Revtex, 12 figures, typos corrected, to appear in Phys. Rev.

    Medium Effects on Binary Collisions with the Delta Resonance

    Full text link
    To facilitate the relativistic heavy-ion calculations based on transport equations, the binary collisions involving a Δ\Delta resonance in either the entrance channel or the exit channel are investigated within a Hamiltonian formulation of πNN\pi NN interactions. An averaging procedure is developed to define a quasi-particle Δ\Delta^* and to express the experimentally measured NNπNNNN\rightarrow \pi NN cross section in terms of an effective NNNΔNN\rightarrow N\Delta^\ast cross section. In contrast to previous works, the main feature of the present approach is that the mass and the momentum of the produced Δ\Delta^*'s are calculated dynamically from the bare ΔπN\Delta \leftrightarrow \pi N vertex interaction of the model Hamiltonian and are constrained by the unitarity condition. The procedure is then extended to define the effective cross sections for the experimentally inaccessible NΔNNN\Delta^\ast \rightarrow NN and NΔNΔN\Delta^\ast \rightarrow N\Delta^\ast reactions. The predicted cross sections are significantly different from what are commonly assumed in relativistic heavy-ion calculations. The Δ\Delta potential in nuclear matter has been calculated by using a Bruckner-Hartree-Fock approximation. By including the mean-field effects on the Δ\Delta propagation, the effective cross sections of the NNNΔNN\rightarrow N\Delta^\ast, NΔNNN\Delta^\ast \rightarrow NN and NΔNΔN\Delta^\ast \rightarrow N\Delta^\ast reactions in nuclear matter are predicted. It is demonstrated that the density dependence is most dramatic in the energy region close to the pion production threshold.Comment: 20 pages, RevTe

    Critical Enhancement of the In-medium Nucleon-Nucleon Cross Section at low Temperatures

    Full text link
    The in-medium nucleon-nucleon cross section is calculated starting from the thermodynamic T-matrix at finite temperatures. The corresponding Bethe-Salpeter-equation is solved using a separable representation of the Paris nucleon-nucleon-potential. The energy-dependent in-medium N-N cross section at a given density shows a strong temperature dependence. Especially at low temperatures and low total momenta, the in-medium cross section is strongly modified by in-medium effects. In particular, with decreasing temperature an enhancement near the Fermi energy is observed. This enhancement can be discussed as a precursor of the superfluid phase transition in nuclear matter.Comment: 10 pages with 4 figures (available on request from the authors), MPG-VT-UR 34/94 accepted for publication in Phys. Rev.

    GCIP water and energy budget synthesis (WEBS)

    Get PDF
    As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996–1999 from the “best available” observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or “close” budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets

    Density anomaly in a competing interactions lattice gas model

    Full text link
    We study a very simple model of a short-range attraction and an outer shell repulsion as a test system for demixing phase transition and density anomaly. The phase-diagram is obtained by applying mean field analysis and Monte Carlo simulations to a two dimensional lattice gas with nearest-neighbors attraction and next-nearest-neighbors repulsion (the outer shell). Two liquid phases and density anomaly are found. The coexistence line between these two liquid phases meets a critical line between the fluid and the low density liquid at a tricritical point. The line of maximum density emerges in the vicinity of the tricritical point, close to the demixing transition

    Relativistic Ring-Diagram Nuclear Matter Calculations

    Full text link
    A relativistic extension of the particle-particle hole-hole ring-diagram many-body formalism is developed by using the Dirac equation for single-particle motion in the medium. Applying this new formalism, calculations are performed for nuclear matter. The results show that the saturation density is improved and the equation of state becomes softer as compared to corresponding Dirac-Brueckner-Hartree-Fock calculations. Using the Bonn A potential, nuclear matter is predicted to saturate at an energy per nucleon of --15.30 MeV and a density equivalent to a Fermi momentum of 1.38 fm1^{-1}, in excellent agreement with empirical information. The compression modulus is 152 MeV at the saturation point.Comment: 23 pages text (LaTex) and 2 figures (paper, will be faxed upon request), UI-NTH-92-0

    A stopped Delta-Matter Source in Heavy Ion Collisions at 10 GeV/n

    Full text link
    We predict the formation of highly dense baryon-rich resonance matter in Au+Au collisions at AGS energies. The final pion yields show observable signs for resonance matter. The Delta(1232) resonance is predicted to be the dominant source for pions of small transverse momenta. Rescattering effects -- consecutive excitation and deexcitation of Deltas -- lead to a long apparent lifetime (> 10 fm/c) and rather large volumina (several 100 fm^3) of the Delta-matter state. Heavier baryon resonances prove to be crucial for reaction dynamics and particle production at AGS.Comment: 17 pages, 5 postscript figures, uses psfig.sty and revtex.st

    Genetic alterations on chromosome 16 and 17 are important features of ductal carcinoma in situ of the breast and are associated with histologic type

    Get PDF
    We analysed the involvement of known and putative tumour suppressor- and oncogene loci in ductal carcinoma in situ (DCIS) by microsatellite analysis (LOH), Southern blotting and comparative genomic hybridization (CGH). A total of 78 pure DCIS cases, classified histologically as well, intermediately and poorly differentiated, were examined for LOH with 76 markers dispersed along all chromosome arms. LOH on chromosome 17 was more frequent in poorly differentiated DCIS (70%) compared to well-differentiated DCIS (17%), whereas loss on chromosome 16 was associated with well- and intermediately differentiated DCIS (66%). For a subset we have done Southern blot- and CGH analysis. C-erbB2/neu was amplified in 30% of poorly differentiated DCIS. No amplification was found of c-myc, mdm2, bek, flg and the epidermal growth factor (EGF)-receptor. By CGH, most frequent alterations in poorly differentiated DCIS were gains on 8q and 17q22–24 and deletion on 17p, whereas in well-differentiated DCIS amplification on chromosome 1q and deletion on 16q were found. In conclusion, our data indicates that inactivation of a yet unknown tumour suppressor gene on chromosome 16q is implicated in the development of most well and intermediately differentiated DCIS whereas amplification and inactivation of various genes on chromosome 17 are implicated in the development of poorly differentiated DCIS. Furthermore these data show that there is a genetic basis for the classification of DCIS in a well and poorly differentiated type and support the evidence of different genetic routes to develop a specific type of carcinoma in situ of the breast. © 1999 Cancer Research Campaig
    corecore