24 research outputs found

    Cd8+ but Not Cd8− Dendritic Cells Cross-Prime Cytotoxic T Cells in Vivo

    Get PDF
    Bone marrow–derived antigen-presenting cells (APCs) take up cell-associated antigens and present them in the context of major histocompatibility complex (MHC) class I molecules to CD8+ T cells in a process referred to as cross-priming. Cross-priming is essential for the induction of CD8+ T cell responses directed towards antigens not expressed in professional APCs. Although in vitro experiments have shown that dendritic cells (DCs) and macrophages are capable of presenting exogenous antigens in association with MHC class I, the cross-presenting cell in vivo has not been identified. We have isolated splenic DCs after in vivo priming with ovalbumin-loaded ÎČ2-microglobulin–deficient splenocytes and show that they indeed present cell-associated antigens in the context of MHC class I molecules. This process is transporter associated with antigen presentation (TAP) dependent, suggesting an endosome to cytosol transport. To determine whether a specific subset of splenic DCs is involved in this cross-presentation, we negatively and positively selected for CD8− and CD8+ DCs. Only the CD8+, and not the CD8−, DC subset demonstrates cross-priming ability. FACSÂź studies after injection of splenocytes loaded with fluorescent beads showed that 1 and 0.6% of the CD8+ and the CD8− DC subsets, respectively, had one or more associated beads. These results indicate that CD8+ DCs play an important role in the generation of cytotoxic T lymphocyte responses specific for cell-associated antigens

    The HLA-A*0201-Restricted H-Y Antigen Contains a Posttranslationally Modified Cysteine That Significantly Affects T Cell Recognition.

    Get PDF
    AbstractA peptide recognized by two cytotoxic T cell clones specific for the human minor histocompatibility antigen H-Y and restricted by HLA-A*0201 was identified. This peptide originates from SMCY, as do two other H-Y epitopes, supporting the importance of this protein as a major source of H-Y determinants in mice and humans. In naturally processed peptides, T cells only recognize posttranslationally altered forms of this peptide that have undergone modification of a cysteine residue in the seventh position. One of these modifications involves attachment of a second cysteine residue via a disulfide bond. This modification has profound effects on T cell recognition and also occurs in other class I MHC-associated peptides, supporting its general importance as an immunological determinant

    Mimicking pathogens to augment the potency of liposomal cancer vaccines

    Get PDF
    Liposomes have emerged as interesting vehicles in cancer vaccination strategies as their composition enables the inclusion of both hydrophilic and hydrophobic antigens and adjuvants. In addition, liposomes can be decorated with targeting moieties to further resemble pathogenic particles that allow for better engagement with the immune system. However, so far liposomal cancer vaccines have not yet reached their full potential in the clinic. In this review, we summarize recent preclinical studies on liposomal cancer vaccines. We describe the basic ingredients for liposomal cancer vaccines, tumor antigens, and adjuvants, and how their combined inclusion together with targeting moieties potentially derived from pathogens can enhance vaccine immunogenicity. We discuss newly identified antigen-presenting cells in humans and mice that pose as promising targets for cancer vaccines. The lessons learned from these preclinical studies can be applied to enhance the efficacy of liposomal cancer vaccination in the clinic

    Mimicking pathogens to augment the potency of liposomal cancer vaccines

    No full text
    Liposomes have emerged as interesting vehicles in cancer vaccination strategies as their composition enables the inclusion of both hydrophilic and hydrophobic antigens and adjuvants. In addition, liposomes can be decorated with targeting moieties to further resemble pathogenic particles that allow for better engagement with the immune system. However, so far liposomal cancer vaccines have not yet reached their full potential in the clinic. In this review, we summarize recent preclinical studies on liposomal cancer vaccines. We describe the basic ingredients for liposomal cancer vaccines, tumor antigens, and adjuvants, and how their combined inclusion together with targeting moieties potentially derived from pathogens can enhance vaccine immunogenicity. We discuss newly identified antigen-presenting cells in humans and mice that pose as promising targets for cancer vaccines. The lessons learned from these preclinical studies can be applied to enhance the efficacy of liposomal cancer vaccination in the clinic

    Mimicking pathogens to augment the potency of liposomal cancer vaccines

    No full text
    Liposomes have emerged as interesting vehicles in cancer vaccination strategies as their composition enables the inclusion of both hydrophilic and hydrophobic antigens and adjuvants. In addition, liposomes can be decorated with targeting moieties to further resemble pathogenic particles that allow for better engagement with the immune system. However, so far liposomal cancer vaccines have not yet reached their full potential in the clinic. In this review, we summarize recent preclinical studies on liposomal cancer vaccines. We describe the basic ingredients for liposomal cancer vaccines, tumor antigens, and adjuvants, and how their combined inclusion together with targeting moieties potentially derived from pathogens can enhance vaccine immunogenicity. We discuss newly identified antigen-presenting cells in humans and mice that pose as promising targets for cancer vaccines. The lessons learned from these preclinical studies can be applied to enhance the efficacy of liposomal cancer vaccination in the clinic

    Immunological dynamics after subcutaneous immunization with a squalene-based oil-in-water adjuvant

    No full text
    The clinically successful adjuvant MF59 is used in seasonal influenza vaccines, which is proposed to enhance immunity by creating an immune-competent microenvironment in the muscle that allows recruitment of immune cells that drive adaptive immune responses. Here, we examined whether the clinically successful adjuvants MF59/AddaVax could be used for subcutaneous use and how antigen delivery can be synergized with cellular dynamics at the vaccination site. Subcutaneous injection of AddaVax leads to thickening of the skin, characterized by a neutrophil-monocyte recruitment sequence. Skin-infiltrating CCR2+Ly6Chigh monocytes showed differentiation to CD11b+Ly6C+MHCII+CD11c+CD64+ monocyte-derived DCs over time in the hypodermal layers of the skin, expressing high levels of CD209a/mDC-SIGN. Surprisingly, skin thickening was accompanied with increased white adipose tissue highly enriched with monocytes. Analysis of the skin-draining lymph nodes revealed early increases in neutrophils and moDCs at 12 hours after injection and later increases in migratory cDC2s. Subcutaneous vaccination with AddaVax enhanced antigen-specific CD8+ and CD4+ T cell responses, while moDC targeting using antigen-coupled CD209a antibody additionally boosted humoral responses. Hence, oil-in-water emulsions provide an attractive immune modulatory adjuvants aimed at increasing cellular responses, as well as antibody responses when combined with moDC targeting

    Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy

    No full text
    Background PD1 immune checkpoint blockade (αPD1 ICB) has shown unparalleled success in treating many types of cancer. However, response to treatment does not always lead to tumor rejection. While αPD1 ICB relies on cytotoxic CD8 + T cells, antigen-presenting cells (APCs) at the tumor site are also needed for costimulation of tumor-infiltrating lymphocytes (TILs). It is still unclear how these APCs develop and function before and during αPD1 ICB or how they are associated with tumor rejection. Methods Here, we used B16 mouse melanoma and MC38 colorectal carcinoma tumor models, which show differential responses to αPD1 ICB. The immune composition of ICB insensitive B16 and sensitive MC38 were extensively investigated using multi-parameter flow cytometry and unsupervised clustering and trajectory analyses. We additionally analyzed existing single cell RNA sequencing data of the myeloid compartment of patients with melanoma undergoing αPD1 ICB. Lastly, we investigated the effect of CD40 agonistic antibody on the tumor-infiltrating monocyte-derived cells during αPD1 ICB. Results We show that monocyte-derived dendritic cells (moDCs) express high levels of costimulatory molecules and are correlated with effector TILs in the tumor microenvironment (TME) after αPD1 ICB only in responding mouse tumor models. Tumor-resident moDCs showed distinct differentiation from monocytes in both mouse and human tumors. We further confirmed significant enrichment of tumor-resident differentiated moDCs in patients with melanoma responding to αPD1 ICB therapy compared with non-responding patients. Moreover, moDCs could be targeted by agonistic anti-CD40 antibody, supporting moDC differentiation, effector T-cell expansion and anti-tumor immunity. Conclusion The combined analysis of myeloid and lymphoid populations in the TME during successful and non-successful PD1 ICB led to the discovery of monocyte-to-DC differentiation linked to expanding T-cell populations. This differentiation was found in patients during ICB, which was significantly higher during successful ICB. The finding of tumor-infiltrating monocytes and differentiating moDCs as druggable target for rational combination therapy opens new avenues of anti-tumor therapy design

    Targeting C-type lectin receptors: A high-carbohydrate diet for dendritic cells to improve cancer vaccines

    No full text
    There is a growing understanding of why certain patients do or do not respond to checkpoint inhibition therapy. This opens new opportunities to reconsider and redevelop vaccine strategies to prime an anticancer immune response. Combination of such vaccines with checkpoint inhibitors will both provide the fuel and release the brake for an efficient anticancer response. Here, we discuss vaccine strategies that use C-type lectin receptor (CLR) targeting of APCs, such as dendritic cells and macrophages. APCs are a necessity for the priming of antigenspecific cytotoxic and helper T cells. Because CLRs are natural carbohydrate-recognition receptors highly expressed by multiple subsets of APCs and involved in uptake and processing of Ags for presentation, these receptors seem particularly interesting for targeting purposes
    corecore