1,525 research outputs found

    Trading bargaining weights

    Get PDF

    Entanglement in the classical limit: quantum correlations from classical probabilities

    Full text link
    We investigate entanglement for a composite closed system endowed with a scaling property allowing to keep the dynamics invariant while the effective Planck constant hbar_eff of the system is varied. Entanglement increases as hbar_eff goes to 0. Moreover for sufficiently low hbar_eff the evolution of the quantum correlations, encapsulated for example in the quantum discord, can be obtained from the mutual information of the corresponding \emph{classical} system. We show this behavior is due to the local suppression of path interferences in the interaction that generates the entanglement. This behavior should be generic for quantum systems in the classical limit.Comment: 10 pages 3 figure

    Quantum Chaos and Random Matrix Theory - Some New Results

    Full text link
    New insight into the correspondence between Quantum Chaos and Random Matrix Theory is gained by developing a semiclassical theory for the autocorrelation function of spectral determinants. We study in particular the unitary operators which are the quantum versions of area preserving maps. The relevant Random Matrix ensembles are the Circular ensembles. The resulting semiclassical expressions depend on the symmetry of the system with respect to time reversal, and on a classical parameter μ=trU1\mu = tr U -1 where U is the classical 1-step evolution operator. For system without time reversal symmetry, we are able to reproduce the exact Random Matrix predictions in the limit μ0\mu \to 0. For systems with time reversal symmetry we can reproduce only some of the features of Random Matrix Theory. For both classes we obtain the leading corrections in μ\mu. The semiclassical theory for integrable systems is also developed, resulting in expressions which reproduce the theory for the Poissonian ensemble to leading order in the semiclassical limit.Comment: LaTeX, 16 pages, to appear in a special issue of Physica D with the proceedings of the workshop on "Physics and Dynamics Between Chaos, Order, and Noise", Berlin, 199

    Is efficiency of classical simulations of quantum dynamics related to integrability?

    Get PDF
    Efficiency of time-evolution of quantum observables, and thermal states of quenched hamiltonians, is studied using time-dependent density matrix renormalization group method in a family of generic quantum spin chains which undergo a transition from integrable to non-integrable - quantum chaotic case as control parameters are varied. Quantum states (observables) are represented in terms of matrix-product-operators with rank D_\epsilon(t), such that evolution of a long chain is accurate within fidelity error \epsilon up to time t. We find that rank generally increases exponentially, D_\epsilon(t) \propto \exp(const t), unless the system is integrable in which case we find polynomial increase.Comment: 4 pages; v2. added paragraph discussing pure state

    Phase Transitions in Generalised Spin-Boson (Dicke) Models

    Full text link
    We consider a class of generalised single mode Dicke Hamiltonians with arbitrary boson coupling in the pseudo-spin xx-zz plane. We find exact solutions in the thermodynamic, large-spin limit as a function of the coupling angle, which allows us to continuously move between the simple dephasing and the original Dicke Hamiltonians. Only in the latter case (orthogonal static and fluctuating couplings), does the parity-symmetry induced quantum phase transition occur.Comment: 6 pages, 5 figue

    Dissipative Quantum Ising model in a cold atomic spin-boson mixture

    Full text link
    Using cold bosonic atoms with two (hyperfine) ground states, we introduce a spin-boson mixture which allows to implement the quantum Ising model in a tunable dissipative environment. The first specie lies in a deep optical lattice with tightly confining wells and forms a spin array; spin-up/down corresponds to occupation by one/no atom at each site. The second specie forms a superfluid reservoir. Different species are coupled coherently via laser transitions and collisions. Whereas the laser coupling mimics a transverse field for the spins, the coupling to the reservoir sound modes induces a ferromagnetic (Ising) coupling as well as dissipation. This gives rise to an order-disorder quantum phase transition where the effect of dissipation can be studied in a controllable manner.Comment: 4 pages, 2 figures, 1 table; Title modified and cosmetic change

    Non-Markovian non-stationary completely positive open quantum system dynamics

    Full text link
    By modeling the interaction of a system with an environment through a renewal approach, we demonstrate that completely positive non-Markovian dynamics may develop some unexplored non-standard statistical properties. The renewal approach is defined by a set of disruptive events, consisting in the action of a completely positive superoperator over the system density matrix. The random time intervals between events are described by an arbitrary waiting-time distribution. We show that, in contrast to the Markovian case, if one performs a system-preparation (measurement) at an arbitrary time, the subsequent evolution of the density matrix evolution is modified. The non-stationary character refers to the absence of an asymptotic master equation even when the preparation is performed at arbitrary long times. In spite of this property, we demonstrate that operator expectation values and operators correlations have the same dynamical structure, establishing the validity of a non-stationary quantum regression hypothesis. The non-stationary property of the dynamic is also analyzed through the response of the system to an external weak perturbation.Comment: 13 pages, 3 figure

    Lindblad rate equations

    Get PDF
    In this paper we derive an extra class of non-Markovian master equations where the system state is written as a sum of auxiliary matrixes whose evolution involve Lindblad contributions with local coupling between all of them, resembling the structure of a classical rate equation. The system dynamics may develops strong non-local effects such as the dependence of the stationary properties with the system initialization. These equations are derived from alternative microscopic interactions, such as complex environments described in a generalized Born-Markov approximation and tripartite system-environment interactions, where extra unobserved degrees of freedom mediates the entanglement between the system and a Markovian reservoir. Conditions that guarantees the completely positive condition of the solution map are found. Quantum stochastic processes that recover the system dynamics in average are formulated. We exemplify our results by analyzing the dynamical action of non-trivial structured dephasing and depolarizing reservoirs over a single qubit.Comment: 12 pages, 2 figure

    Statistics of conductance oscillations of a quantum dot in the Coulomb-blockade regime

    Full text link
    The fluctuations and the distribution of the conductance peak spacings of a quantum dot in the Coulomb-blockade regime are studied and compared with the predictions of random matrix theory (RMT). The experimental data were obtained in transport measurements performed on a semiconductor quantum dot fabricated in a GaAs-AlGaAs heterostructure. It is found that the fluctuations in the peak spacings are considerably larger than the mean level spacing in the quantum dot. The distribution of the spacings appears Gaussian both for zero and for non-zero magnetic field and deviates strongly from the RMT-predictions.Comment: 7 pages, 4 figure
    corecore