We investigate entanglement for a composite closed system endowed with a
scaling property allowing to keep the dynamics invariant while the effective
Planck constant hbar_eff of the system is varied. Entanglement increases as
hbar_eff goes to 0. Moreover for sufficiently low hbar_eff the evolution of the
quantum correlations, encapsulated for example in the quantum discord, can be
obtained from the mutual information of the corresponding \emph{classical}
system. We show this behavior is due to the local suppression of path
interferences in the interaction that generates the entanglement. This behavior
should be generic for quantum systems in the classical limit.Comment: 10 pages 3 figure