656 research outputs found

    Cavity-enhanced photoionization of an ultracold rubidium beam for application in focused ion beams

    Get PDF
    A two-step photoionization strategy of an ultracold rubidium beam for application in a focused ion beam instrument is analyzed and implemented. In this strategy the atomic beam is partly selected with an aperture after which the transmitted atoms are ionized in the overlap of a tightly cylindrically focused excitation laser beam and an ionization laser beam whose power is enhanced in a build-up cavity. The advantage of this strategy, as compared to without the use of a build-up cavity, is that higher ionization degrees can be reached at higher currents. Optical Bloch equations including the photoionization process are used to calculate what ionization degree and ionization position distribution can be reached. Furthermore, the ionization strategy is tested on an ultracold beam of 85^{85}Rb atoms. The beam current is measured as a function of the excitation and ionization laser beam intensity and the selection aperture size. Although details are different, the global trends of the measurements agree well with the calculation. With a selection aperture diameter of 52 μ\mum, a current of (170±4)\left(170\pm4\right) pA is measured, which according to calculations is 63% of the current equivalent of the transmitted atomic flux. Taking into account the ionization degree the ion beam peak reduced brightness is estimated at 1×1071\times10^7 A/(m2 ^2\,sr \,eV).Comment: 13 pages, 9 figure

    Methylation Status of Imprinted Genes and Repetitive Elements in Sperm DNA from Infertile Males

    Get PDF
    Stochastic, environmentally and/or genetically induced disturbances in the genome-wide epigenetic reprogramming processes during male germ-cell development may contribute to male infertility. To test this hypothesis, we have studied the methylation levels of 2 paternally (H19 and GTL2) and 5 maternally methylated (LIT1, MEST, NESPAS, PEG3, and SNRPN) imprinted genes, as well as of ALU and LINE1 repetitive elements in 141 sperm samples, which were used for assisted reproductive technologies (ART), including 106 couples with strictly male-factor or combined male and female infertility and 28 couples with strictly female-factor infertility. Aberrant methylation imprints showed a significant association with abnormal semen parameters, but did not seem to influence ART outcome. Repeat methylation also differed significantly between sperm samples from infertile and presumably fertile males. However, in contrast to imprinted genes, ALU methylation had a significant impact on pregnancy and live-birth rate in couples with male-factor or combined infertility. ALU methylation was significantly high-er in sperm samples leading to pregnancy and live-birth than in those that did not. Sperm samples leading to abortions showed significantly lower ALU methylation levels than those leading to the birth of a baby. Copyright (C) 2011 S. Karger AG, Base

    Green Function Monte Carlo with Stochastic Reconfiguration

    Full text link
    A new method for the stabilization of the sign problem in the Green Function Monte Carlo technique is proposed. The method is devised for real lattice Hamiltonians and is based on an iterative ''stochastic reconfiguration'' scheme which introduces some bias but allows a stable simulation with constant sign. The systematic reduction of this bias is in principle possible. The method is applied to the frustrated J1-J2 Heisenberg model, and tested against exact diagonalization data. Evidence of a finite spin gap for J2/J1 >~ 0.4 is found in the thermodynamic limit.Comment: 13 pages, RevTeX + 3 encapsulated postscript figure

    Improving Statistical Analysis in Team Science: The Case of a Bayesian Multiverse of Many Labs 4

    Get PDF
    Team-science projects have become the “gold standard” for assessing the replicability and variability of key findings in psychological science. However, we believe the typical meta-analytic approach in these projects fails to match the wealth of collected data. Instead, we advocate the use of Bayesian hierarchical modeling for team-science projects, potentially extended in a multiverse analysis. We illustrate this full-scale analysis by applying it to the recently published Many Labs 4 project. This project aimed to replicate the mortality-salience effect—that being reminded of one’s own death strengthens the own cultural identity. In a multiverse analysis, we assess the robustness of the results with varying data-inclusion criteria and prior settings. Bayesian model comparison results largely converge to a common conclusion: The data provide evidence against a mortality-salience effect across the majority of our analyses. We issue general recommendations to facilitate full-scale analyses in team-science projects.</p
    • …
    corecore