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General Article

Over the last decade, data collection in psychological 
science has become vastly more rigorous. Currently, 
experiments are often preregistered, and the generally 
accepted best practice for investigating a particular 
effect is to conduct a many-labs Registered Report (e.g., 
Chambers et al., 2013; Hagger et al., 2016; Klein et al., 
2018; Landy et  al., 2020; Wagenmakers, Beek, et  al., 
2016). Although researchers now invest a lot of time and 
effort in preregistering their studies to ensure data of 
high quality, the way researchers analyze the resulting 
data has not changed markedly. Currently, the most 
popular analysis approach is still frequentist meta-
analysis with p values and confidence intervals (e.g., 
Borenstein et  al., 2009; Simons et  al., 2014). Here we 
present a primer on an alternative method: Bayesian 
model-averaged meta-analysis (e.g., Gronau, van Erp, 
et  al., 2017; Haaf et  al., 2020; Hinne et  al., 2019; 
Hoogeveen et al., 2018; Scheibehenne et al., 2017; Vohs 
et  al., in press). This method combines the results of 
Bayesian fixed-effect and Bayesian random-effects mod-
els according to the models’ plausibilities given the data. 

Compared with the standard frequentist procedure, the 
Bayesian procedure affords researchers a number of 
pragmatic benefits (for a general introduction to Bayesian 
inference and its benefits, see the special issue in Psycho­
nomic Bulletin & Review; Vandekerckhove et al., 2018). 
Specifically, the Bayesian procedure allows researchers 
to

•• assess the degree to which data make a claim more 
or less plausible. By quantifying evidence on a 
continuous scale, the Bayesian approach encour-
ages more nuanced conclusions instead of all-or-
none decisions. For instance, one may make 
statements of the form “compared with the effect-
absent hypothesis, the data have made the 
effect-present hypothesis 10 times more likely than 
it was before.”
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Abstract
Meta-analysis is the predominant approach for quantitatively synthesizing a set of studies. If the studies themselves 
are of high quality, meta-analysis can provide valuable insights into the current scientific state of knowledge about a 
particular phenomenon. In psychological science, the most common approach is to conduct frequentist meta-analysis. 
In this primer, we discuss an alternative method, Bayesian model-averaged meta-analysis. This procedure combines the 
results of four Bayesian meta-analysis models: (a) fixed-effect null hypothesis, (b) fixed-effect alternative hypothesis, (c) 
random-effects null hypothesis, and (d) random-effects alternative hypothesis. These models are combined according 
to their plausibilities given the observed data to address the two key questions “Is the overall effect nonzero?” and “Is 
there between-study variability in effect size?” Bayesian model-averaged meta-analysis therefore avoids the need to select 
either a fixed-effect or random-effects model and instead takes into account model uncertainty in a principled manner.
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•• discriminate evidence of absence from absence of 
evidence. This enables researchers to disentangle 
whether there is evidence for the null hypothesis 
or whether the data are inconclusive. For instance, 
one may conclude that there is absence of evi-
dence when the data support both the null hypoth-
esis and the alternative hypothesis about equally. 
In meta-analysis, this scenario is most likely when 
the number of studies is small. Alternatively, one 
may conclude there is evidence of absence in case 
the data support the null hypothesis much more 
than the alternative hypothesis.

•• update evidence and posterior distributions as 
experiments accumulate. This enables open-ended, 
sequential testing and estimation that is both effi-
cient and ethical. For instance, if one planned to 
test 100 participants but the evidence is already 
compelling after 50, one may stop data collection 
early. Likewise, researchers can update a Bayesian 
meta-analysis with data from new studies after the 
initial set has already been analyzed.

•• make direct and intuitive statements concerning 
the plausibility of models and parameters. This 
enables a straightforward interpretation of the 
results. For instance, one may state that given the 
observed data, the alternative hypothesis receives 
probability 0.75 or that the probability is 0.50 that 
the effect size is between 0.1 and 0.3.

•• include expert knowledge for more diagnostic 
tests. This enables the incorporation of expert 
knowledge not only in the design of a study but 
also in the analysis of the resulting data. For 
instance, an expert may state that the most likely 
effect size is 0.3, with 95% uncertainty interval 
ranging from 0.1 to 0.5. This can be incorporated 
in the analysis in the form of an informed prior 
distribution for effect size. Robustness of the 
results can easily be checked by comparing the 
results to those obtained when using a default or 
less informative prior.

•• model-average across fixed-effect and random-
effects models, which takes into account model 
uncertainty. This prevents overconfidence and 
allows for a graceful transition to more compli-
cated models as data accumulate. For instance, 
when addressing the question whether the meta-
analytic effect size is zero, model averaging allows 
one to take into account uncertainty with respect 
to whether there is heterogeneity in effect size 
across studies.

In this primer, we provide an introduction to Bayesian 
model-averaged meta-analysis, and we demonstrate the 
procedure using a concrete example from the literature. 

The goal of this primer is to (a) highlight the pragmatic 
benefits of a Bayesian model-averaged meta-analysis, 
(b) provide readers with the knowledge to correctly 
interpret the results of such an analysis, and (c) demon-
strate that applied researchers can straightforwardly con-
duct these analyses in practice using the R (R Core Team, 
2019) package metaBMA (Heck et  al., 2019) or JASP 
( JASP Team, 2019).

Bayesian Meta-Analysis

In Bayesian meta-analysis (e.g., Higgins et  al., 2009; 
Rouder & Morey, 2011; T. C. Smith et al., 1995; Sutton & 
Abrams, 2001), the most common approach is to use a 
random-effects model. Below, we first introduce the 
random-effects model and then outline hypotheses of 
interest about the model parameters. For an alternative 
Bayesian meta-analysis approach that focuses on the 
question of whether the effects in all studies are in the 
same direction, see Rouder et al. (2019).

The random-effects model

In line with the frequentist meta-analysis procedure, 
Bayesian meta-analysis takes as input an observed effect 
size, yi, and a corresponding standard error, SEi, for each 
study i = 1, 2, . . ., K. To accommodate studies with dif-
ferent dependent measures and designs, these effect 
sizes are typically standardized measures such as Cohen’s 
d or Fisher’s z. The random-effects model assumes that 
the observed effect size yi is drawn from a normal dis-
tribution with mean equal to the latent true study effect 
qi  and standard deviation fixed to the observed SEi.

1 
The latent study effects qi  are themselves drawn from 
a normal distribution, with mean given by the overall 
effect size m and standard deviation given by the 
between-study heterogeneity parameter t. This setup is 
illustrated in Figure 1. The model parameters m and t 
are assigned prior distributions denoted by g(∙) and h(∙), 
respectively (see Box 1 for recommendations on how to 
choose these prior distributions). In sum, the model is 
specified as follows:

	

y SE

g

h

i i i

i

∼ θ

θ ∼ µ τ
µ ∼
τ ∼

Normal

Normal

( , )

( , )

( )

( ).

2

2

⋅
⋅

� (1)

Note that when the between-study standard deviation 
parameter t = 0, the model implies that the effect for 
each study is identical and is equal to m (i.e., fixed 
effect).2 In contrast, when t > 0, the model assumes that 
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the latent true effect varies across studies (i.e., random 
effects).

Limitations of the random-effects 
model

Existing Bayesian meta-analysis procedures often focus on 
estimating the model parameters m and t of the random-
effects model (T. C. Smith et al., 1995; Stangl & Berry, 
2000). Specifically, they focus on interpreting the posterior 
distribution and possibly summaries of the posterior dis-
tribution such as the mean, median, or 95% CI. However, 
simply fitting a random-effects model assumes that both 
m and t are nonzero—implying that there is an effect and 
heterogeneity in the effect across studies—and then 
focuses on estimating the size of m and t. Nevertheless, 
it has been argued that before one estimates a parameter, 
one should test whether there is anything to be estimated 
(i.e., testing whether a parameter is equal to zero should 
precede parameter estimation; Fisher, 1928, p. 274; Haaf 
et al., 2019; Jeffreys, 1939, p. 345). Consequently, before 
estimating the parameters m and t, one should address, 
in a principled manner, two questions:

Question 1 (Q1): Is the overall effect nonzero?

Question 2 (Q2): Is there between-study variability in 
effect size?

Below we outline how to address these questions using 
Bayesian hypothesis testing in combination with Bayes-
ian model averaging.3 We have applied this framework 

to analyze power posing studies (Gronau, van Erp, et al., 
2017), to investigate the effectiveness of descriptive social 
norms in facilitating ecological behavior (Scheibehenne 
et  al., 2017), to test the compensatory control theory 
(Hoogeveen et al., 2018), to analyze facial feedback rep-
lication studies (Hinne et  al., 2019), to analyze how 
research results are influenced by subjective decisions 
that scientists make as they design studies (Landy et al., 
2020), and to reanalyze the Many Labs 4 data (Haaf et al., 
2020). Furthermore, we have applied this methodology 
to analyze a set of replication studies concerning the ego 
depletion effect (Vohs et al., in press).

Four rival hypotheses

Our Bayesian model-averaged meta-analysis framework 
considers four candidate hypotheses (e.g., Gronau, van 
Erp, et al., 2017; Scheibehenne et al., 2017).4 These cor-
respond to the four possibilities for fixing to zero either 
m or t, both, or neither:

1.	 the fixed-effect null hypothesis 0
f : µ = 0, τ = 0;

2.	 the fixed-effect alternative hypothesis 1
f : 

µ ∼ g( )⋅ , τ = 0;
3.	 the random-effects null hypothesis 0

r : µ = 0, 
τ ∼ h( )⋅ ;

4.	 the random-effects alternative hypothesis 1
r : 

µ ∼ g( )⋅ , τ ∼ h( )⋅ .

Figure 3 displays the differences in prior specification 
for the four hypotheses (each hypothesis corresponds 
to a separate row).5 Specifically, the first column displays 
the prior on the overall effect size m, and the second 
column displays the prior on the between-study standard 
deviation t. For the hypotheses in which the prior is not 
a point mass at zero, we have used the default prior 
recommendations from Box 1 (i.e., a zero-centered Cauchy 
prior with scale 1 2/  on m and an Inverse-Gamma 
[1,  0.15] prior on t). The third column displays the 
implied joint prior on two hypothetical latent true study 
effects, qi  and q j .

6 The fixed-effect null hypothesis 0
f  

fixes m and t to zero (Fig. 3, Row 1, Columns 1 and 2). 
Consequently, the true latent study effect is exactly zero 
for each study (Fig. 3, Row 1, Column 3). The fixed-effect 
alternative hypothesis 1

f  fixes t to zero (Fig. 3, Row 
2, Column 2) but allows m to differ from zero (i.e., m is 
assigned a continuous prior distribution; Fig. 3, Row 2, 
Column 1). Consequently, the latent true study effects 
can differ from zero. However, because 1

f  does not 
specify any between-study variability (i.e., τ = 0), all 
studies have the identical latent true effect size. Hence, 
the implied joint prior on two latent true study effects 
qi  and q j  assigns nonzero probability mass only to the 
diagonal line where qi  and q j  are identical (Fig. 3, Row 

Distribution of study effects:
θi ∼ Normal(µ, τ2)

Distribution of observed effects:
yi ∼ Normal(θi , SEi

2)

θ1 θ2 θK

Study effects:
θ1, θ2,..., θK

Observed effects:
y1, y2,..., yKy1 y2 yK

Fig. 1.  Meta-analytic random-effects model. The prior distributions 
for the overall effect size m and the between-study standard deviation 
t  are not displayed. Available at https://tinyurl.com/y7jgqyow under 
CC license https://creativecommons.org/licenses/by/2.0/.

https://tinyurl.com/y7jgqyow
https://creativecommons.org/licenses/by/2.0/
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2, Column 3). The random-effects null hypothesis 0
r  

fixes the overall effect size m to zero (Fig. 2, Row 3, 
Column 1) but allows the between-study standard devia-
tion t to differ from zero (i.e., t is assigned a continuous 
prior distribution; Fig. 3, Row 3, Column 2). Conse-
quently, the latent true study effects may be different, 
but their distribution is centered on zero because the 
overall effect size m is fixed to zero (Fig. 3, Row 3, Col-
umn 3). Finally, the random-effects alternative hypoth-
esis 1

r  allows both m and t to differ from zero (Fig. 3, 
Row 4, Columns 1 and 2). Consequently, each latent true 
study effect is unique. The latent true study effects are 
correlated because their size depends on the specific 
values for m and t. Hence, a priori, one latent true study 
effect being large implies that another one will likely 
also be large. The distribution of two hypothetical latent 

Box 1.  Recommendations for Choosing the Parameter Prior Distributions

To apply the Bayesian model-averaged meta-analysis framework in practice, one needs to specify a prior dis-
tribution for the overall effect size m and the between-study standard deviation parameter t. Here we describe 
our approach to choosing theses prior distributions when the considered effect size is a standardized mean 
difference (i.e., Cohen’s d or Hedges’s g).a For the between-study standard deviation parameter t, we recom-
mend an empirically informed prior distribution. This prior is based on the distribution of nonzero between-
study standard deviation estimates for standardized mean difference effect sizes from meta-analyses reported 
in Psychological Bulletin in the years 1990 to 2013 (van Erp et al., 2017). Specifically, Gronau, van Erp, et al. 
(2017) approximated this empirical distribution by an Inverse-Gamma(1, 0.15) prior on t (see Fig. 3). For the 
overall effect size parameter m, we recommend to consider both a default choice and an informed choice. By 
default, we refer to a prior distribution that is (a) centered on zero and (b) not overly narrow or overly wide 
( Jeffreys, 1939; Lindley, 1957). We typically use a Cauchy prior with scale 1 2/  ≈ 0.707 (see Fig. 3). This is 
the default choice for standardized mean differences in the BayesFactor package (Morey & Rouder, 2015). Nev-
ertheless, other choices like a zero-centered normal prior also appear reasonable. By informed, we refer to a 
prior distribution that is based on expert knowledge about the studied effect or based on a literature review. 
An informed prior is typically centered on a value different from zero to capture existing knowledge about 

effect size. In addition, informed priors use expert 
knowledge to indicate the expected direction of an 
effect by truncating the prior distribution (e.g., 
practicing should increase memory performance). An 
example informed prior distribution is displayed in 
Figure 2. Considering both a default and informed 
prior for m serves as a robustness check: In case the 
results do not change qualitatively, the results are 
robust across different plausible prior choices. In 
case the results do change qualitatively, it needs to 
be accepted that the data may not be very informa-
tive and that the conclusion hinges on the prior 
specification. Another robustness check can be  
conducted by varying the width of the default prior 
on m.

aOther effect size measures are, of course, possible 
and can be easily analyzed using the referenced soft-
ware. Nevertheless, the parameter prior distributions 
need to be adjusted for other effect size measures.

µ
−0.5

De
ns
ity

4

3

2

1

0

0.0 0.5 1.0

Fig. 2.  Example of an informed prior distribution for the overall 
effect size m: A t distribution with location 0.35, scale 0.102, and 
3 df, truncated below at zero. This “Oosterwijk” prior (Gronau 
et al., 2020) will be used later in the example. Available at https://
tinyurl.com/ycc965f2 under CC license https://creativecommons 
.org/licenses/by/2.0/.

true study effects is still centered on zero because the 
prior on the overall effect m is centered on zero. How-
ever, the prior under 1

r  spreads out its mass across a 
larger range of effect size values than the prior under 
0

r  because m is assigned a continuous prior that allows 
values other than zero.

Bayesian hypothesis testing

Each of the four rival hypotheses corresponds to one 
possible combination of the effect being present or 
absent and heterogeneity being present or absent. The 
goal is to assess the evidence for each of the four 
hypotheses by updating their plausibility according to 
the observed data. Given the shift in plausibility, one 
can then address Q1 and Q2 in a principled manner.

https://tinyurl.com/ycc965f2
https://tinyurl.com/ycc965f2
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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−2 −1 0 1 2−2 −1 0 1 2 0.20.0 0.4 0.6 0.8 1.0

−2 −1 0 1 2−2 −1 0 1 2 0.20.0 0.4 0.6 0.8 1.0

0.05
0.25
0.5
0.75
0.95

µ τ θi & θj

H0
f

H0
r

H1
f

H1
r

Fig. 3.  Parameter prior specifications for the four hypotheses of interest. Each row corresponds to one hypothesis (i.e., the fixed-effect 
null hypothesis [ 0

f ], the fixed-effect alternative hypothesis [ 1
f ] , the random-effects null hypothesis [ ]0

r
, and the random-effects 

alternative hypothesis [ 1
r ] ). The first column displays the prior distribution on the overall effect size m, and the second column 

displays the prior distribution on the between-study standard deviation t. For the hypotheses for which the prior is not a point mass 
at zero, we have used the default prior recommendations from Box 1 (i.e., a zero-centered Cauchy prior with scale 1 2/  on m and 
an Inverse-Gamma[1, 0.15] prior on t). The third column displays the implied joint prior on two hypothetical latent true study effects, 
qi and qj. For the random-effects hypotheses, the contours reflect 5%, 25%, 50%, 75%, and 95% of probability within the area. Avail-
able at https://tinyurl.com/y98wqg5t under CC license https://creativecommons.org/licenses/by/2.0/.

https://tinyurl.com/y98wqg5t
https://creativecommons.org/licenses/by/2.0/
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In the Bayesian framework, evidence for a model 
relative to another model is quantified using the Bayes 
factor (BF; Etz & Wagenmakers, 2017; Jeffreys, 1935, 
1961; Kass & Raftery, 1995; Wrinch & Jeffreys, 1921). For 
example, one may be interested in the evidence for the 
fixed-effect model with an effect as opposed to the 
fixed-effect model with zero effect. The BF between 
these two models is

	

BF
data

data
BF

for effect
Relative pr

 


1 0

1

0

f f

p

p

f

f,

( | )

( | )��� ��
=

eedictive

accuracy

� ��� ���
,
� (2)

in which p( )data|  denotes how well a hypothesis   
predicted the data at hand. Therefore, the BF may be 
interpreted as the relative predictive accuracy of two 
models (Rouder & Morey, 2019).

Here, we focus on an additional interpretation of the 
BF that comes from rearranging the terms of Bayes rule. 
According to the additional interpretation, the BF quanti-
fies the change in beliefs about the hypotheses brought 
about by the data (i.e., the change from prior to posterior 
odds of two hypotheses):

	

BF
data

data
BF

for effect
Posterior o

 


1 0

1

0

f f

p

p

f

f,

( | )

( | )��� ��
=

ddds

for effect

Prior odds

for effect

� ��� ��� ��� ��
/

( )

( )
.

p

p

f

f




1

0 � (3)

In this equation, p f( )1  denotes the prior probability 
of the fixed-effect alternative hypothesis 1

f , and 
p f( )1 |data  denotes the posterior probability of 1

f  
(i.e., after having updated one’s knowledge according 
to observed data). Likewise, p f( )0  denotes the prior 
probability of the fixed-effect null hypothesis 0

f , and 
p f( )0 |data  denotes the posterior probability of 0

f .7

To illustrate how to quantify change in beliefs using 
the BF, we consider a hypothetical example. Figure 4 
displays hypothetical prior and posterior probabilities 
for the four rival hypotheses. The top part of the plot 
shows prior probabilities of the hypotheses (i.e., plau-
sibility before having seen any data), and by default, all 
of them are set to 0.25. The bottom panel of Figure 4 
displays hypothetical posterior probabilities of the 
hypotheses (i.e., plausibility after having updated one’s 
knowledge according to observed data). In contrast to 
the prior probabilities, these are not equal anymore 
because the data have shifted one’s beliefs.

We are now ready to calculate the BF from Equation 
3. For the hypothetical example in Figure 4, the prior 
odds are given by 0.25 / 0.25 = 1, and the posterior odds 
are given by 0.40 / 0.15 ≈ 2.67. Consequently, the BF is 
BF 1 0

2 67 1 2 67f f,
. / . ,≈ =  which indicates that—assuming 

a fixed-effect model—the data have made the effect-
present hypothesis 2.7 times more likely than it was 
before compared with the effect-absent hypothesis. In 
a similar fashion, one could compute BF 1 0

r r,
 to quantify 

the evidence for the effect being nonzero assuming 
random effects. The prior odds are again given by 
0 25 0 25 1. / . = , and the posterior odds are given by 
0 35 0 10 3 5. / . .= . Consequently, the BF is BF 1 0

3 5 1r r,
. /=  = 

3.5, which indicates that—assuming a random-effects 
model—the data have made the effect-present hypoth-
esis 3.5 times more likely than it was before compared 
with the effect-absent hypothesis.

To address the question of whether there is hetero-
geneity in the effect across studies (Q2; i.e., test for fixed 
effect or random effects), one may compute BF 1 1

r f,
. This 

BF compares the random-effects hypothesis with the 
fixed-effect hypothesis under the assumption that effect 
size m is nonzero. For the hypothetical example in Figure 
4, the prior odds are given by 0 25 0 25 1. / . = , and the 
posterior odds are given by 0 35 0 40 0 875. / . .= . Conse-
quently, BF 1 1

0 35 0 40 1 0 875r f,
( . / . ) / .= =  or, equiva-

lently, BF BF   1 1 1 1
1 1 14f r r f, ,
/ .= ≈ . This BF indicates 

that—assuming that an effect is present—the data have 
made the heterogeneity-absent hypothesis about 1.14 
times more likely than it was before, compared with the 
heterogeneity-present hypothesis.

Bayesian model averaging

For the fictional scenario above, one could conclude 
that the BF in favor of the effect-present hypothesis is 
either BF 1 0

3 5r r,
.=  (if there is heterogeneity in the 

effect) or BF 1 0
f f,

 ≈ 2.67 (if there is no heterogeneity). 
Furthermore, the data support both the random-effects 
alternative hypothesis and the fixed-effect alternative 
hypothesis about equally (i.e., assuming an effect, 
BF 1 1

f r,
 ≈ 1.14). Hence, considerable uncertainty remains 

with respect to whether a fixed-effect or a random-
effects model is more appropriate. Instead of ignoring 
this uncertainty for final inference, one can take this 
uncertainty into account by considering all four hypoth-
eses simultaneously according to their plausibility in 
light of the observed data. This procedure is known as 
Bayesian model averaging (e.g., Hinne et  al., 2019; 
Hoeting et al., 1999).

To quantify the evidence for the effect being present 
while taking into account uncertainty with respect to 
choosing a fixed-effect or random-effects model, one 
can compute a model-averaged inclusion BF. This BF 
contrasts all hypotheses that allow the effect to be non-
zero (i.e., 1

f  and 1
r ) to all hypotheses that constrain 

the effect to be exactly zero (i.e., 0
f  and 0

r ) and thus 
fully takes into account model uncertainty with respect 
to choosing a fixed-effect or random-effects model.8 Fig-
ure 4 illustrates how this model-averaged inclusion BF 
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is computed. This BF, just as any BF, is given by the 
change from prior to posterior odds. However, this time, 
these are prior and posterior inclusion odds. The top 
panel of Figure 4 displays the prior probabilities of the 
hypotheses. By default, all of them are set to 0.25. The 
left scale shows how to compute the prior inclusion odds 
for the presence of an effect. Specifically, the hypotheses 
that allow m to differ from zero (i.e., 1

r  and 1
f ) are 

contrasted with the hypotheses that fix m to zero (i.e., 
0

r  and 0
f ). Because the combined prior probability of 

the hypotheses that allow m to differ from zero is 0.50 
and the combined prior probability of the hypotheses 
that fix m to zero is also 0.50, the prior inclusion odds 
are equal to 1.9 The bottom panel of Figure 4 illustrates 

Fig. 4.  Prior probabilities of the hypotheses and computation of the model-averaged prior inclusion 
odds (top) and exemplary posterior probabilities and computation of the model-averaged posterior 
inclusion odds (bottom). Available at https://www.bayesianspectacles.org/library/ under CC license 
https://creativecommons.org/licenses/by/2.0/.

how to compute the posterior inclusion odds using hypo-
thetical posterior probabilities. In contrast to the prior 
probabilities, these are not equal anymore after having 
updated one’s knowledge according to observed data. 
The left scale in Figure 4 compares the hypotheses that 
allow m to differ from zero with the hypotheses that fix 
m to zero. Given the posterior probabilities, this compari-
son favors the hypotheses that allow m to be nonzero 
(combined posterior probability of 0.75) over the hypoth-
eses that fix m to zero (combined posterior probability 
of 0.25). Consequently, the posterior inclusion odds are 
given by 0.75 / 0.25 = 3. Finally, the model-averaged 
inclusion BF for an effect is obtained by dividing the 
posterior inclusion odds by the prior inclusion odds10:

https://www.bayesianspectacles.org/library/
https://creativecommons.org/licenses/by/2.0/
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In this example, dividing the posterior inclusion odds 
by the prior inclusion odds yields BF10 3 1 3= =/ . This 
BF indicates that compared with the effect-absent 
hypothesis, the data have made the effect-present 
hypothesis 3 times more likely than it was before.

In a similar fashion, one can compute a model-aver-
aged inclusion BF to compare all hypotheses that allow 
the between-study standard deviation t  to be nonzero 
(i.e., 0

r  and 1
r ) to all hypotheses that fix t  to zero 

(i.e., 0
f  and 1

f ):
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(5)

The computation of this BF is also illustrated in Figure 
4 (i.e., scales on the right). The prior inclusion odds for 
heterogeneity are equal to 1, and the posterior inclusion 
odds are equal to 0.45/0.55 ≈ 0.82. Consequently, 
BFrf = ≈( . / . ) / .0 45 0 55 1 0 82 , or expressed in favor of no 
heterogeneity, BFfr ≈ 1.22. This BF indicates that com-
pared with the heterogeneity-present hypothesis, the 
data have made the heterogeneity-absent hypothesis 
about 1.22 times more likely than it was before.

One may also use model averaging in estimation to 
obtain a model-averaged posterior distribution for the 
parameters m and t. These model-averaged posterior 
distributions combine the posterior for each hypothesis 
by weighting them with the posterior probability of each 
hypothesis. There are two useful ways of obtaining 
model-averaged posteriors. First, one may combine the 
posterior for, say, m for all four hypotheses according to 
their posterior probabilities. Because two of the hypoth-
eses fix m a priori to zero (i.e., 0

f  and 0
r ), the model-

averaged posterior will be a mixture between a 
point-mass at zero and a continuous component. Sec-
ond, one could choose to focus only on the hypotheses 
that do not fix the parameter to zero. This yields a 
model-averaged posterior without a spike at zero. Impor-
tantly, in this case, one needs to be clear about the fact 
that this represents the model-averaged posterior under 
the assumption that the effect is nonzero. In the software 
that we use below (i.e., metaBMA and JASP), only the 
latter approach has currently been implemented (i.e., 
displaying the model-averaged posterior conditional on 
assuming that the effect is present).

Example: Testing the Self-Concept 
Maintenance Theory

According to the self-concept maintenance theory (Mazar 
et al., 2008), people will cheat to maximize self-profit, 
but only to the extent that they can still maintain a posi-
tive self-view. In their Experiment 1, Mazar et al. (2008) 
gave participants an incentive and opportunity to cheat. 
Before working on a problem-solving task, participants 
either recalled, as a moral reminder, the Ten Command-
ments or, as a neutral condition, 10 books they had read 
in high school. In line with the self-concept maintenance 
hypothesis, participants in the moral reminder condition 
reported having solved fewer problems than those in 
the neutral condition, which also reflected their actual 
performance better. Recently, a Registered Replication 
Report (Verschuere et al., 2018) attempted to replicate 
this finding. Here we focus on the primary meta-analysis 
that included data from 19 labs. Figure 5 displays the 
observed Cohen’s d effect size and corresponding 95% 
CI for each lab.11 Negative effect sizes are in line with 
the self-concept maintenance hypothesis (i.e., the self-
concept maintenance theory predicts that participants 
in the Ten Commandments condition cheat less than 
participants in the neutral condition, not more), whereas 
positive effect sizes are opposite to what the theory 
predicts.

For the primary analysis, Verschuere et  al. (2018) 
reported a meta-analytic Cohen’s d of 0.04 (95% CI = 
[−0.04, 0.12]).12 Consequently, the effect was nonsignifi-
cant and in the opposite direction of the effect size in 
the original study. Furthermore, Verschuere et al. con-
cluded that there was no heterogeneity across labs: 
τ2 0= , Q( ) .18 13 16= , p = .78 . Here we conduct a reanal-
ysis using the Bayesian model-averaged meta-analysis 
approach.

Parameter prior settings

We use three different parameter prior specifications. 
These specifications differ only in the prior for m because 
the prior for t is always an Inverse-Gamma(1, 0.15) dis-
tribution. The first specification assigns m a default zero-
centered Cauchy prior distribution with scale 1 2/  . This 
specification will be referred to as default (two-sided). 
The second specification is very similar but truncates the 
default Cauchy prior distribution at zero to incorporate 
the directedness of the self-concept maintenance hypoth-
esis (i.e., participants in the Ten Commandments condi-
tion are expected to cheat less than participants in the 
neutral condition, not more). This specification will be 
referred to as default (one-sided). Finally, the third speci-
fication uses as an informed prior for m a t distribution 
that is centered on −0.35, with scale 0.102 and 3 df. This 
prior is also truncated at zero to preclude effect sizes in 
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the direction opposite to what the hypothesis predicts. 
This “Oosterwijk” prior has been elicited for a reanalysis 
of a social psychology study (Gronau et al., 2020), but 
we believe it is a reasonable prior for psychological stud-
ies more generally.13 This specification will be referred 
to as informed (one-sided).

Results

Hypotheses posterior probabilities.  Table 1 displays 
the prior and posterior probabilities of the hypotheses for 
each of the three different prior specifications. The order-
ing of the posterior probabilities is identical for all three 
prior specifications: The fixed-effect null hypothesis 
(0

f )  receives most posterior probability, followed by 
the random-effects null hypothesis ( )0

r , the fixed-effect 

Table 1.  Prior and Posterior Probabilities of the Four Hypotheses of Interest

Hypothesis p()

p( | ) data

Default (two-sided) Default (one-sided) Informed (one-sided)

0
f

0.25 0.754 0.823 0.837
1

f
0.25 0.087 0.017 0.004

0
r 0.25 0.143 0.156 0.159

1
r 0.25 0.016 0.004 0.001

Note: Data from Verschuere et al. (2018). 0
f
 = fixed-effect null hypothesis; 1

f = fixed-effect alternative 
hypothesis; 0

r  = random-effects null hypothesis; 1
r  = random-effects alternative hypothesis.

10.5−0.5−1 0
Cohen’s d

Wiggins
Wick
Verschuere
Vanpaemel
Sutan
Suchotzki
Özdoğru
Meijer
McCarthy
Loschelder
Laine
Koppel
klein Selle & Rozmann
Holzmeister
Gonzalez-Iraizoz
Ferreira-Santos
Evans
Birt
Aczel

 0.09 [−0.26, 0.45]
−0.03 [−0.34, 0.28]
 0.08 [−0.26, 0.42]
 0.09 [−0.28, 0.45]
 0.01 [−0.39, 0.41]
 0.00 [−0.36, 0.36]
 0.40 [−0.01, 0.80]
−0.08 [−0.38, 0.22]
 0.16 [−0.24, 0.56]
−0.05 [−0.42, 0.31]
−0.17 [−0.54, 0.20]
 0.17 [−0.18, 0.52]
−0.11 [−0.44, 0.23]
 0.28 [−0.08, 0.63]
 0.09 [−0.27, 0.46]
−0.07 [−0.46, 0.31]
 0.33 [−0.05, 0.70]
 0.16 [−0.23, 0.55]
−0.10 [−0.48, 0.27]

Fig. 5.  Observed effect sizes (Cohen’s d) with corresponding 95% confidence intervals for the Registered Replica-
tion Report by Verschuere et al. (2018). Only the 19 labs that were included in the primary analysis are displayed. 
Available at https://tinyurl.com/ydad5k7p under CC license https://creativecommons.org/licenses/by/2.0/.

alternative hypothesis ( )1
f , and the random-effects alter-

native hypothesis ( )1
r .

Model-averaged BF for an overall effect.  To address 
the question of whether the meta-analytic effect is non-
zero (i.e., Q1), we compute the model-averaged BF, BF10, 
for each prior setting. This can be achieved solely using the 
probabilities presented in Table 1. For the default (two-
sided) prior setting, the posterior inclusion odds for an 
effect are given by ( . . ) / ( . . ) .0 087 0 016 0 754 0 143 0 115+ + ≈  . 
Because the prior inclusion odds are equal to 1, this num-
ber equals the model-averaged BF, BF10 ≈ 0.115. Conse-
quently, BF BF01 101 8 696= ≈/ . , which indicates moderate 
evidence for the absence of an effect. For the default (one-
sided) prior setting, the posterior inclusion odds for an 

https://tinyurl.com/ydad5k7p
https://creativecommons.org/licenses/by/2.0/
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effect are given by ( . . ) / ( . . ) .0 017 0 004 0 823 0 156 0 021+ + ≈  ; 
this number equals the model-averaged BF, BF10 ≈ 0.021. 
Consequently, BF BF01 101 47 619= ≈/ . , which indicates very 
strong evidence for the absence of an effect. For the informed 
(one-sided) prior setting, the posterior inclusion odds are 
calculated in the same fashion. The model-averaged BF  
is therefore BF10 0 004 0 001 0 837 0 159≈ + + ≈( . . ) / ( . . ) 0.005. 
Consequently, BF BF01 101 200= ≈/ , which indicates ex
treme evidence for the absence of an effect. In sum, for all 
prior settings, the model-averaged BF indicates evidence 
in favor of the null hypothesis of no effect. However, the 
degree of evidence differs across prior settings. The rea-
son why the default (one-sided) and the informed (one-
sided) prior setting yield more evidence for the absence of 
an effect is that, as reported by Verschuere et al. (2018), 
the meta-analytic effect goes in the direction opposite of 
what the theory predicts, and these priors for m do not 
assign any mass to population effect size values that go in 
the opposite direction.

Model-averaged BF for heterogeneity.  To address the 
question of whether there is heterogeneity in effect size 
across studies (i.e., Q2), we compute the model-averaged 
BF, BFrf, for each prior setting. This can again be achieved 
solely using the probabilities presented in Table 1. For the 
default (two-sided) prior setting, the posterior inclusion 
odds for heterogeneity are given by ( . . ) / ( . . ) .0 143 0 016 0 754 0 087 0 189+ + ≈

( . . ) / ( . . ) .0 143 0 016 0 754 0 087 0 189+ + ≈ . Because the prior inclusion odds 
are equal to 1, this number equals the model-averaged 
BF, BFrf ≈ 0.189. Consequently, BF BFfr rf= ≈1 5 291/ . , 
which indicates moderate evidence for the absence of 
heterogeneity. For the default (one-sided) prior setting, 

the posterior inclusion odds for heterogeneity are given 
by ( . . ) / ( . . ) .0 156 0 004 0 823 0 017 0 190+ + ≈ ; this number 
equals the model-averaged BF, BFrf ≈ 0.190. Consequently, 
BF BFfr rf= ≈1 5 263/ . , which indicates moderate evi-
dence for the absence of heterogeneity. For the informed 
(one-sided) prior setting, the model-averaged BF is given 
by BFrf ≈ + + ≈( . . ) / ( . . ) .0 159 0 001 0 837 0 004 0 190. Conse-
quently, BF BFfr rf= ≈1 5 263/ . , which indicates moderate 
evidence for the absence of heterogeneity. In sum, for all 
prior settings, the model-averaged BF indicates evidence 
in favor of the null hypothesis of no heterogeneity. The 
degree of evidence is very similar across prior settings, 
which indicates moderate evidence for the absence of 
heterogeneity.

Sequential analysis.  For this particular example, stud-
ies were conducted at about the same time, and we do not 
know the order in which they finished. However, in other 
cases, the temporal order may be known and of interest. 
This is especially the case for meta-analyses combining 
studies from several decades because trends in the field 
may affect study design and results. Here we demonstrate 
how to conduct a sequential analysis that displays the evi-
dence as studies accumulate. Because the presented 
approach is Bayesian, current knowledge can be updated 
by new evidence without having to worry about optional 
stopping (Rouder, 2014). To demonstrate the sequential 
analysis, we make the arbitrary assumption that the tem-
poral order of the studies coincides with the alphabetical 
order of the last names of the labs’ leading researchers. 
Furthermore, for demonstration purposes, we focus on 
one prior setting, default (two-sided). Figure 6 displays 
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Fig. 6.  Sequential analysis. The posterior probability for each of the four hypotheses 
is displayed as a function of the number of studies included in the analysis. Figure 
from JASP (jasp-stats.org).
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how the posterior probability for each of the four hypoth-
eses changes as studies accumulate. Note that at the zero 
point of the x-axis, all hypotheses have “posterior” prob-
ability 0.25: Without any data, the posterior probability 
equals the prior probability. Figure 6 highlights that the 
posterior probability for the fixed-effect null hypothesis, 
0

f ,  increases as more studies become available. Com-
pared with the prior probability, all other hypotheses 
decrease in plausibility over time. Note that both hypoth-
eses that fix effect size m to zero (0

f  and 0
r ) have a 

higher posterior probability than the two hypotheses that 
allow m to differ from zero (1

f  and 1
r ). The lines end 

with the inclusion of Study 19, and this point describes the 
current state of evidence. However, as more studies 
become available, one could extend this analysis further 
and interpret the updated state of evidence (Berger & 
Wolpert, 1988; Rouder, 2014; Wagenmakers, Gronau, & 
Vandekerckhove, 2018).

Parameter posterior distribution.  As shown above, 
all prior settings resulted in evidence against the self-con-
cept maintenance theory. It could be argued that this makes 
estimation of the population effect size unnecessary—the 
data offer no reason to consider an estimate other than 
µ = 0 . Nevertheless, in practice, it may still be of interest 
to show how small or large the effect size is estimated 
under the assumption that the effect is nonzero. In gen-
eral, we believe that for parameter estimation, it is advis-
able to not use a truncated prior for the parameter of 
interest (van Doorn et al., 2019). The reason is that, as in 
the present example, the effect may be in the direction 
opposite to what the hypothesis predicts. Whenever a 
prior is truncated to allow only effect sizes that align with 
the hypothesis, it is impossible to obtain a posterior that 
assigns probability mass to effect sizes in the opposite 

direction. As a consequence, a posterior distribution based 
on truncated priors may be misleading (in the present 
example, the truncated posterior would be left-skewed 
with almost all probability mass close to zero). Figure 7 
displays the posterior distribution for m using the default 
(two-sided) prior setting. Posteriors are shown for both 
hypotheses that allow m to differ from zero (1

f  and 1
r) 

and, additionally, the model-averaged posterior that is 
obtained by combining these two posteriors according to 
the plausibility of the hypotheses according to the data. 
Figure 7 shows that, assuming m is not exactly equal to 
zero, it is likely to be small and have most posterior mass 
in the direction opposite to what the theory predicts. Fur-
thermore, the posterior distributions under both hypothe-
ses are very similar, which results in a model-averaged 
posterior that is also very similar.

Discussion

In this primer, we have discussed Bayesian model-aver-
aged meta-analysis as a method for quantitatively syn-
thesizing the results of a set of studies. This procedure 
affords researchers the well-known pragmatic benefits 
of a Bayesian method (Wagenmakers, Marsman, et al., 
2018; Wagenmakers, Morey, & Lee, 2016). In addition, it 
allows researchers to take into account model uncertainty 
with respect to choosing a fixed-effect or random-effects 
model when addressing the two key questions of whether 
the overall effect is nonzero (Q1) and whether there is 
between-study variability in effect size (Q2).

Effects of prior settings

There are two a priori settings to consider for a Bayesian 
model-averaged meta-analysis: the prior probabilities for 
the four models (i.e., prior model probabilities) and the 
prior distributions for the overall effect m and the study 
heterogeneity t (i.e., prior parameter distributions). We 
now discuss each setting in turn.

Concerning the prior model probabilities, in the 
Appendix we show how the results change as a function 
of how the prior probability is distributed across the four 
models. When comparing two models, the choice of 
prior model probabilities does not affect the BF; how-
ever, this is no longer the case when more than two 
models are in play. In such scenarios, the model-averaged 
BFs are generally sensitive to the choice of prior model 
probabilities. For unequal prior probabilities, the poste-
rior probabilities may change quite drastically. In our 
application to the data from Verschuere et  al. (2018), 
however, the pattern of BF is relatively robust to reason-
able changes in the prior model probabilities (see 
Appendix). Nevertheless, we recommend using uniform 
prior probability settings across the models if there are 
no clear theoretical reasons for different settings.
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Concerning the prior distributions for the model 
parameters, concrete recommendations are provided in 
Box 1. We showed that in our application to the data 
from Verschuere et  al. (2018), for some reasonably 
informed choices, the pattern of evidence from the BFs 
is comparable. The more informed a prior distribution 
is (e.g., choosing a one-sided prior distribution for the 
overall effect size), the faster evidence accumulates for 
or against this hypothesis. When in doubt about these 
settings, we recommend conducting a robustness analy-
sis in which researchers choose several reasonable prior 
settings and check how these choices affect the results. 
Note that in this primer, we focused on standardized 
mean difference effect sizes (i.e., Cohen’s d or Hedges’s 
g) and provided recommendations for how to choose 
the prior distributions for this case. If the observed effect 
sizes are not standardized mean differences, one needs 
to adjust these prior distributions. Providing recommen-
dations for other cases such as Fisher’s z and log odd 
ratios is left to future research.

Justification of the models

Up to this point, we have tacitly assumed that each of 
the four models under consideration is a reasonable 
abstraction of a possible real-world phenomenon that a 
researcher is interested in. We do not believe that any 
of the models are “true” in the sense that they corre-
spond to reality exactly. As stated by A. F. M. Smith 
(1981),

as soon as we make any selection from the huge 
complex of assumptions (i.e. models) available to 
us, we are entering into a kind of metaphor. All 
models are metaphors. We must always recognize 
that underlying everything we do is an “as if” 
philosophy. We should always be saying (as loudly 
as possible) “I am going to condition on certain 
assumptions, and anything I say has to be 
interpreted as if (at this moment) I believe in those 
assumptions.” (p. 121)

Nevertheless, the usefulness of some of the models 
in our set may be disputed. This holds particularly for 
the fixed-effect models, which assume that the true effect 
size is identical across all studies, and the random-effects 
null hypothesis, which assumes that each experiment 
has a nonzero effect but that the group mean equals 
zero exactly. We will discuss these models in turn.

Fixed-effect models.  Some methodologists have argued 
that a parameter is never truly equal to zero (e.g., Bakan, 
1966; Cohen, 1994; Laplace, 1774/1986; Meehl, 1967, 1978; 
Nunnally, 1960; Schmidt & Hunter, 1997; Tukey, 1991). 

From this perspective, the fixed-effect models are deemed 
utterly implausible from the outset because the between-
studies variability t is assumed to equal zero exactly (but 
see Hedges & Vevea, 1998).14 In line with the quotation 
from Adrian Smith (1981) above, our view is that all mod-
els are abstractions and should be interpreted as meta-
phors. Fixing t = 0 is an implementation of the theoretical 
position that between-study variability is negligible. Of 
course, with infinitely many studies, t may not be exactly 
zero. With a finite number of studies, however, the models 
that fix t to zero may outpredict the competition, particu-
larly if the number of available studies is small. Random-
effects models are less parsimonious and require more 
studies for their parameters to be estimated accurately. If 
between-study variability t is indeed nonzero, the plausi-
bility of the fixed-effect models will wane as studies accu-
mulate, and the plausibility of the random-effects models 
will wax. At any point, the relative influence of the fixed-
effect as opposed to the random-effects models is a func-
tion of predictive performance: If the fixed-effect models 
indeed predict the observed data poorly, they will simply 
not receive much posterior probability, and model-
averaged inference will be driven primarily by the 
random-effects models. Finally, the results produced by 
assuming a point-null hypothesis t = 0 will be similar to 
those produced by assuming a peri-null hypothesis that 
assigns t a distribution that is highly concentrated near 
zero. Researchers who are uncomfortable with point-null 
hypotheses may view them as mathematically convenient 
approximations to more realistic peri-null hypotheses that 
assume t to be negligibly small (but not equal to zero 
exactly).15

Random-effects null hypothesis.  Researchers who 
believe a parameter is never truly equal to zero may simi-
larly object to the random-effects null hypothesis that fixes 
the group mean m to zero. In fact, for the case of the 
random-effects null hypothesis, there is an added con-
cern: How could it be possible that each study effect itself 
is nonzero but the group mean of the study effects hap-
pens to average out to zero exactly? Even if the group 
mean were virtually zero at some stage, adding another 
study would almost certainly move it away from zero 
again.16 We agree that these are valid objections. Neverthe-
less, we remain convinced that including this model in the 
model-averaging procedure is sound rather than silly.17 As 
before, one may consider the random-effects null hypoth-
esis as a mathematically convenient approximation of the 
peri-null hypothesis that states the effect is not exactly 
zero but falls in an interval close to zero. In other words, 
the model effectively assumes that any changes in the 
group mean are dwarfed by study-specific effects (e.g., 
due to unknown moderators). If this model were excluded, 
any systematic variation in effects across studies will 
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greatly heighten the plausibility of the random-effects 1, 
which also states that there is an effect on the group mean. 
In other words, without the random-effects null hypoth-
esis in the model set, a single experiment with a clear 
effect suffices to conclude that there exists an effect across 
all experiments as well. We believe that both skeptical and 
pragmatic researchers will find this conclusion premature. 
Thus, including the random-effects null hypothesis pro-
vides a check on the random-effects alternative hypothe-
sis, dampens the impact of outlying experiments, and 
generally makes the inference more robust to model mis-
specification. Finally, if the random-effects null hypothesis 
truly provides a terrible account of the observed data, its 
posterior probability will be close to zero, and it will play 
a negligible role in the model-averaging procedure.

Caveats

There exist a number of caveats for both the proposed 
Bayesian meta-analysis approach specifically and meta-
analysis in general. The main danger is that researchers 
treat the outcome of a meta-analysis as definitive without 
taking into account the assumptions and limitations of 
the approach. In general, there are many uncertainties 
when applying meta-analysis; the proposed approach 
attempts to address one of these uncertainties (i.e., 
should a fixed-effect or random-effects model be used) 
using Bayesian model averaging. One uncertainty that 
is not addressed by the approach is whether the assump-
tion of a normal distribution of true study effects is 
plausible. It may be argued that this assumption is prob-
lematic because of a number of reasons. For example, 
there may be dependencies between different effect 
sizes due to including multiple effect sizes from the same 
articles or multiple studies from the same lab. Moreover, 
there may be sequential dependencies given that 
researchers may inform their study designs by reading 
the literature (this may be less of a concern for many-
labs meta-analyses). Furthermore, researchers should be 
aware that there may be measurement-error and range-
restriction issues. A number of methods have been pro-
posed to address these caveats (e.g., Cheung & Chan, 
2008; Schmidt & Hunter, 2015; Tipton, 2015). Another 
caveat is that the presence of publication bias may dis-
tort the meta-analytic result. Publication bias can be 
ruled out in case the complete set of studies has been 
preregistered (e.g., in the form of a Registered Replica-
tion Report, Chambers, 2017; van Elk et al., 2015). When-
ever publication bias cannot be ruled out, a number of 
methods have been proposed for estimating the extent 
of this publication bias and for correcting the meta-
analytic effect size estimate (e.g., Gronau, Duizer, et al., 
2017; Simonsohn et al., 2014a, 2014b; van Assen et al., 
2015).18 Furthermore, our lab has recently proposed an 

extension of the Bayesian model-averaged meta-analysis 
procedure that takes into account the possibility of pub-
lication bias (Bartoš et al., 2020; Maier et al., 2020). In 
any case, it is important to emphasize that researchers 
should not blindly trust meta-analysis results but should 
take into account substantive expertise and knowledge 
about the limitations of the procedure.

Beyond overall effects

In addition to the key questions Q1 and Q2, researchers 
may often be interested in incorporating discrete and 
continuous moderators at the study level. Although we 
did not discuss this possibility here, the metaBMA pack-
age does provide functionality for including moderators. 
Including moderators in the analysis is one way of 
accounting for the fact that different subsets of studies 
might have different latent effect sizes. Another possible 
way of incorporating and testing this assumption would 
be to change the distribution of the latent study effects. 
Instead of assuming a single continuous normal distribu-
tion of effect sizes, one could assume a latent mixture 
of normal distributions and then test how many compo-
nents are necessary to describe the distribution of latent 
study effects best (e.g., Moreau & Corballis, 2019).

An additional approach to a Bayesian meta-analysis 
is to focus on the entire distribution of study effects 
instead of the overall effect. For instance, Rouder et al. 
(2019) proposed to test whether all studies in the meta-
analytic sample show an effect in the same, expected 
direction or whether some studies show an opposite 
effect. An appropriate model for this analysis is one in 
which both the distribution of the overall effect and the 
distribution of individual study effects are truncated; the 
latter truncation is imposed to allow individual study 
effects in one direction only (upper level of Fig. 1). This 
model can then be compared with the unconstrained 
alternative (i.e., the random-effects alternative). Similar 
tests have been proposed in the clinical literature, in 
which meta-analysis also serves the purpose to test 
whether one treatment is superior for one patient popu-
lation and another treatment is superior for another 
patient population (Gail & Simon, 1985). Such a “Does 
every study show an effect?” analysis is implemented in 
the metaBMA package.

As a final word of caution, we would like to stress again 
that, in line with the adage “garbage in, garbage out,” no 
statistical analysis can provide high-quality inference based 
on low-quality data that might be the result of problematic 
study design, shortcomings of the implementation or sam-
ple, publication bias, significance chasing, and so on; 
Bayesian model-averaged meta-analysis is no exception. 
For instance, one may use the procedure to analyze studies 
that have not been preregistered; however, the conclusions 
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might need to be interpreted with skepticism in case the 
quality of the included studies is questionable or if the 
included studies represent a biased sample of all con-
ducted studies in a field. In contrast, when the set of 
studies is of high quality, preregistered, and possibly even 
the result of a Registered (Replication) Report, we believe 
that Bayesian model-averaged meta-analysis can be a valu-
able tool that allows researchers to address key questions 
of interest in a principled manner.

Appendix

Changing the prior probabilities  
of the hypotheses

When computing Bayes factors (BFs) that compare two 
models, such as BF f f 1 0,

 (see Equation 2 and Equation 
3), the prior probabilities of the hypotheses do not affect 
the resulting BF. For instance, when inserting the expres-
sions for the posterior probabilities in Equation 3, the 
prior probabilities cancel out:
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In contrast, when computing inclusion BFs that involve 
more than two models, the prior probabilities affect the 
resulting BFs. For instance, when inserting the expres-
sions for the posterior probabilities in Equation 4, the 
prior probabilities do not cancel out:19
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Here we demonstrate the effect of changing the prior 
probabilities of the hypotheses using the self-concept 
maintenance example. Specifically, we show how the 
posterior probabilities of the hypotheses and the inclu-
sion BFs change when (a) increasing the prior probabil-
ity of the winning hypothesis 0

f  from 0.25 to 0.70 and 
(b) increasing the prior probability of the worst hypoth-
esis 1

r  from 0.25 to 0.70.
The remaining prior probability, 0.30, is distributed 

evenly across the other three hypotheses (i.e., each of the 
remaining hypotheses is assigned prior probability 0.10).

Increasing the prior probability of 0
f

Hypotheses posterior probabilities.  Table 2 displays the 
prior probabilities of the hypotheses and the posterior 
probabilities of the hypotheses for each of the three 

different prior specifications for m. Although the num-
bers changed, the ordering of the posterior probabilities 
is identical to the one obtained when using equal prior 
probabilities for all four hypotheses: For all prior speci-
fications, the fixed-effect null hypothesis (0

f )  receives 
most posterior probability, followed by the random-effects 
null hypothesis (0

r ), the fixed-effect alternative hypoth-
esis (1

f ), and the random-effects alternative hypothesis 
(1

r ).

Model-averaged BF for an overall effect.  For the default 
(two-sided) prior setting, BF10 ≈ 0.077. Consequently, BF01 ≈ 
12.987, which indicates strong evidence for the absence of 
an effect. Recall that equal prior probabilities for all four 
hypotheses yielded BF01 ≈ 8.696, which indicates moder-
ate evidence for the absence of an effect. For the default 
(one-sided) prior setting, BF10  ≈ 0.016. Consequently, 
BF01 ≈ 62.5, which indicates very strong evidence for the 
absence of an effect. Equal prior probabilities for all four 
hypotheses yielded BF01 ≈ 47.619, which also indicates 
very strong evidence for the absence of an effect. For the 
informed (one-sided) prior setting, BF10 ≈ 0.004. Conse-
quently, BF01 ≈ 250, which indicates extreme evidence for 
the absence of an effect. Equal prior probabilities for all 
four hypotheses yielded BF01 ≈ 200, which also indicates 
extreme evidence for the absence of an effect. In sum, the 
inclusion BFs based on the different setting of the prior 
probabilities of the four hypotheses (see Table 2) quali-
tatively agree with the ones obtained when using equal 
prior probabilities: There is evidence for the absence of an 
effect. However, they differ in the degree of evidence for 
the absence of an effect.

Model-averaged BF for heterogeneity.  For the default 
(two-sided) prior setting, BFrf ≈ 0.119. Consequently, 
BFfr ≈ 8.403, which indicates moderate evidence for the 
absence of heterogeneity. Recall that equal prior prob-
abilities for all four hypotheses yielded BFfr ≈ 5.291, 
which also indicates moderate evidence for the absence 
of heterogeneity. For the default (one-sided) prior setting, 
BFrf ≈ 0.111. Consequently, BFfr ≈ 9.009 indicates moder-
ate evidence for the absence of heterogeneity. Equal prior 
probabilities for all four hypotheses yielded BFfr ≈ 5.263, 
which also indicates moderate evidence for the absence 
of heterogeneity. For the informed (one-sided) prior set-
ting, BFrf ≈ 0.107. Consequently, BFfr ≈ 9.346, which indi-
cates moderate evidence for the absence of heterogeneity. 
Equal prior probabilities for all four hypotheses yielded 
BFfr ≈ 5.263, which also indicates moderate evidence for 
the absence of heterogeneity. In sum, the inclusion BFs 
based on the different setting of the prior probabilities 
of the four hypotheses (see Table 2) qualitatively agree 
with the ones obtained when using equal prior probabili-
ties: There is evidence for the absence of heterogeneity. 
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However, they differ in the degree of evidence for the 
absence of heterogeneity.

Increasing the prior probability of 1
r

Hypotheses posterior probabilities.  Table 3 displays the 
prior probabilities of the hypotheses and the posterior 
probabilities of the hypotheses for each of the three dif-
ferent prior specifications for m. Although the numbers 
changed, the ordering of the posterior probabilities is 
similar to the one obtained when using equal prior prob-
abilities for all four hypotheses: For all prior specifica-
tions, the fixed-effect null hypothesis 0

f  receives most 
posterior probability, followed by the random-effects null 
hypothesis 0

r ). However, now the fixed-effect alternative 
hypothesis 1

f  receives less posterior probability than the 
random-effects alternative hypothesis 1

r .

Model-averaged BF for an overall effect.  For the default 
(two-sided) prior setting, BF10 ≈ 0.056. Consequently, 
BF01  ≈ 17.857, which indicates strong evidence for the 
absence of an effect. Recall that equal prior probabilities 
for all four hypotheses yielded BF01 ≈ 8.696, which indi-
cates moderate evidence for the absence of an effect. For 
the default (one-sided) prior setting, BF10 ≈ 0.011. Conse-
quently, BF01 ≈ 90.909, which indicates very strong evi-
dence for the absence of an effect. Equal prior probabilities 
for all four hypotheses yielded BF01 ≈ 47.619, which also 

indicates very strong evidence for the absence of an effect. 
For the informed (one-sided) prior setting, BF10 ≈ 0.003. 
Consequently, BF01 ≈ 333.333, which indicates extreme 
evidence for the absence of an effect. Equal prior prob-
abilities for all four hypotheses yielded BF01 ≈ 200, which 
also indicates extreme evidence for the absence of an 
effect. In sum, the inclusion BFs based on the different set-
ting of the prior probabilities of the four hypotheses (see 
Table 3) qualitatively agree with the ones obtained when 
using equal prior probabilities: There is evidence for the 
absence of an effect. However, they differ in the degree of 
evidence for the absence of an effect.

Model-averaged BF for heterogeneity.  For the default 
(two-sided) prior setting, BFrf ≈ 0.076. Consequently, 
BFfr  ≈ 13.158, which indicates strong evidence for the 
absence of heterogeneity. Recall that equal prior prob-
abilities for all four hypotheses yielded BFfr ≈ 5.291, 
which indicates moderate evidence for the absence of 
heterogeneity. For the default (one-sided) prior setting, 
BFrf ≈ 0.054. Consequently, BFfr ≈ 18.519, which indicates 
strong evidence for the absence of heterogeneity. Equal 
prior probabilities for all four hypotheses yielded BFfr ≈ 
5.263, which indicates moderate evidence for the absence 
of heterogeneity. For the informed (one-sided) prior set-
ting, BFrf ≈ 0.049. Consequently, BFfr ≈ 20.408, which indi-
cates strong evidence for the absence of heterogeneity. 

Table 2.  Prior and Posterior Probabilities of the Four Hypotheses of Interest

Hypothesis p( )

p( | ) data

Default (two-sided) Default (one-sided) Informed (one-sided)

0
f 0.70 0.955 0.970 0.973

1
f 0.10 0.016 0.003 0.001

0
r 0.10 0.026 0.026 0.026

1
r 0.10 0.003 0.001 0.000

Note: Data from Verschuere et al. (2018). The posterior probabilities are displayed for three different prior 
settings for the effect size parameter m. Note that the prior probability of 0

f
 is set to 0.70. 0

f
 = fixed-

effect null hypothesis; 1
f = fixed-effect alternative hypothesis; 0

r  = random-effects null hypothesis; 
1

r  = random-effects alternative hypothesis.

Table 3.  Prior and Posterior Probabilities of the Four Hypotheses of Interest

Hypothesis p( )

p( | ) data

Default (two-sided) Default (one-sided) Informed (one-sided)

0
f 0.10 0.687 0.805 0.833

1
f 0.10 0.079 0.017 0.004

0
r 0.10 0.130 0.153 0.158

1
r 0.70 0.104 0.026 0.006

Note: Data from Verschuere et al. (2018). The posterior probabilities are displayed for three different prior 
settings for the effect size parameter m. Note that the prior probability of 1

r  is set to 0.70. 0
f
 = fixed-

effect null hypothesis; 1
f = fixed-effect alternative hypothesis; 0

r
 = random-effects null hypothesis; 

1
r  = random-effects alternative hypothesis.
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Equal prior probabilities for all four hypotheses yielded 
BFfr ≈ 5.263, which indicates moderate evidence for the 
absence of heterogeneity. In sum, the inclusion BFs 
based on the different setting of the prior probabilities 
of the four hypotheses (see Table 2) qualitatively agree 
with the ones obtained when using equal prior probabil-
ities: There is evidence for the absence of heterogeneity. 
However, they differ in the degree of evidence for the 
absence of heterogeneity.

Summary

In sum, changing the prior probabilities of the hypoth-
eses—as expected—has an effect on the posterior prob-
abilities of the hypotheses. Furthermore, it also has an 
effect on the inclusion BFs, that is, it has an effect on 
the degree of model-averaged evidence. However, in 
this particular example, using the particular changes to 
the prior probability that we used, it does not change 
the qualitative overall conclusions that there is evi-
dence for the absence of an effect and that there is 
evidence for the absence of heterogeneity. In general, 
we believe that unless there is strong prior knowledge 
that suggests to set the prior probabilities differently, 
it is prudent to set the prior probabilities of all four 
hypotheses uniformly to 0.25.
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Notes

1. The use of the observed SEi as a plug-in estimate is a 
widely used simplification that may not always be appropriate 
(Domínguez Islas & Rice, 2018).
2. We use the term fixed effect to be consistent with the meta-
analysis literature; the term common effect may be more appro-
priate (e.g., Rouder et al., 2019).
3. Note that this framework does not preclude parameter 
estimation.
4. The terms hypothesis and model are used interchangeably.
5. This figure was inspired by Haaf and Rouder (2017), Figure 3.
6. Note that qi and qj correspond to two latent true study effects 
and do not refer to the observed effect sizes.
7. Note that when comparing exactly two models, the prior prob-
abilities do not affect the resulting BF because they cancel out 
(see Appendix).
8. The term inclusion BF refers to the fact that it contrasts all 
hypotheses that include m as a free parameter with all hypoth-
eses that do not include m as a free parameter but fix it to zero.
9. Note that this may not be the case when the prior probabilities 
of the hypotheses are not set equal.
10. Note that in contrast to BFs that compare only two models, 
inclusion BFs that involve more than two models are affected by 
the setting of the prior probabilities because they do not cancel 
out (see Appendix).
11. We converted the raw effect sizes to standardized effect sizes 
(Cohen’s d) with corresponding standard errors.
12. Note that Verschuere et al. (2018) attached a minus sign to 
this effect size to indicate that the effect goes in the direction 
opposite to that of the hypothesis.
13. We flipped the sign of the location parameter to align with 
the way the data are coded (i.e., the theory predicts negative 
effect sizes).
14. Hedges and Vevea (1998) argued that there are cases in 
which the fixed-effect model is appropriate even when there is 
substantial between-study variability in effect sizes. Specifically, 
they argued that the fixed-effect model is appropriate when 
the goal is conditional inference, that is, when one wishes 
to make inference only about the set of studies observed (in 
contrast to unconditional inference, in which one wishes 
to generalize to a population of studies). We believe this 
more descriptive purpose (conditional inference) is at odds 
with our methodology. Specifically, for our Bayesian imple-
mentation, we commit to a particular data-generating model 
for the fixed-effect case that indeed assumes zero between-
studies variability.
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15. Olsson-Collentine et  al. (2020) reported that in many 
direct replication studies in cognitive and social psychology, 
between-study variability is negligible.
16. One reviewer called the random-effects null hypothesis 
“nothing short of silly. It specifies that the parent distribution 
governing the sampling of studies is perfectly balanced such that 
in the world studies vary but exactly half are positive and exactly 
half are negative. What a ridiculous proposition. It is not in the 
interest of the readership to advance this silly model.”
17. We note that there were disagreements within the author 
team regarding the usefulness of this model. One of the team 
members notes that in comparison with the random-effects alter-
native hypothesis, this model is only mildly more restrictive. And 
the interpretation that all nonzero study effects sum to zero is 
unsatisfactory at best. Therefore, this team member believes that 
in cases in which this model might be preferred, researchers may 
as well pay the price and consider the random-effects alternative 
hypothesis as the best theoretically plausible model.
18. See also http://shinyapps.org/apps/metaExplorer/.
19. The prior probabilities do cancel out when the models that 
allow for an effect (i.e., 1

f
 and 1

r
) are assigned equal prior 

probability c1 and the models that do not allow for an effect 
(i.e., 0

f
 and 0

r
) are assigned equal prior probability c2. Note 

that c1 and c2 can be different. However, in that case, the model-
averaged BF for testing the presence of between-study heteroge-
neity, BFrf, will be affected because the prior probabilities do not 
cancel out. Likewise, for BFrf, the prior probabilities do cancel out 
when the models that allow for heterogeneity (i.e., 0

r and 1
r

 ) 
are assigned equal prior probability c3 and the models that do 
not allow for heterogeneity (i.e., 0

f  and 1
f ) are assigned equal 

prior probability c4. However, in that case, the model-averaged BF 
for testing the presence of an effect BF10 will be affected because 
the prior probabilities do not cancel out anymore.
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