48,953 research outputs found

    Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique

    Full text link
    A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the properties of a magnetized beam.Comment: arXiv admin note: text overlap with arXiv:1609.0166

    Interference Effects Due to Commensurate Electron Trajectories and Topological Crossovers in (TMTSF)2ClO4

    Full text link
    We report angle-dependent magnetoresistance measurements on (TMTSF)2ClO4 that provide strong support for a new macroscopic quantum phenomenon, the interference commensurate (IC) effect, in quasi-one dimensional metals. In addition to observing rich magnetoresistance oscillations, and fitting them with one-electron calculations, we observe a clear demarcation of field-dependent behavior at local resistance minima and maxima (versus field angle). Anticipated by a theoretical treatment of the IC effect in terms of Bragg reflections in the extended Brillouin zone, this behavior results from 1D-2D topological crossovers of electron wave functions as a function of field orientation.Comment: 14 page

    Magnetic susceptibility of alkali-TCNQ salts and extended Hubbard models with bond order and charge density wave phases

    Full text link
    The molar spin susceptibilities χ(T)\chi(T) of Na-TCNQ, K-TCNQ and Rb-TCNQ(II) are fit quantitatively to 450 K in terms of half-filled bands of three one-dimensional Hubbard models with extended interactions using exact results for finite systems. All three models have bond order wave (BOW) and charge density wave (CDW) phases with boundary V=Vc(U)V = V_c(U) for nearest-neighbor interaction VV and on-site repulsion UU. At high TT, all three salts have regular stacks of TCNQ−\rm TCNQ^- anion radicals. The χ(T)\chi(T) fits place Na and K in the CDW phase and Rb(II) in the BOW phase with V≈VcV \approx V_c. The Na and K salts have dimerized stacks at T<TdT < T_d while Rb(II) has regular stacks at 100K. The χ(T)\chi(T) analysis extends to dimerized stacks and to dimerization fluctuations in Rb(II). The three models yield consistent values of UU, VV and transfer integrals tt for closely related TCNQ−\rm TCNQ^- stacks. Model parameters based on χ(T)\chi(T) are smaller than those from optical data that in turn are considerably reduced by electronic polarization from quantum chemical calculation of UU, VV and tt on adjacent TCNQ−\rm TCNQ^- ions. The χ(T)\chi(T) analysis shows that fully relaxed states have reduced model parameters compared to optical or vibration spectra of dimerized or regular TCNQ−\rm TCNQ^- stacks.Comment: 9 pages and 5 figure

    Conformational Instability of Rodlike Polyelectrolytes due to Counterion Fluctuations

    Full text link
    The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length. It is also found that the onset of conformational instability is a re-entrant phenomenon as a function of polyelectrolyte length for the unscreened case, and the Debye length or salt concentration for the screened case. This may be relevant in understanding the experimentally observed re-entrant condensation of DNA.Comment: 8 pages, 4 figure

    The identity of the recipients of the Fourth Gospel in the light of the purpose of the Gospel

    Get PDF
    The purpose of this article is to explore the identity of the recipients at the time of the completion of the Gospel. An effort is made to determine to whom John wrote this Gospel and how he adapted his theological message to reach this aim. It will be argued that John did not only focus on a specific group of people, but had a wide variety of people (i.e., Jews, Hellenists, Samaritans) in mind, which leads to the conclusion that the Fourth Gospel was written with both evangelistic and didactic aims

    A well-posedness theory in measures for some kinetic models of collective motion

    Full text link
    We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models

    Enumeration of distinct mechanically stable disk packings in small systems

    Full text link
    We create mechanically stable (MS) packings of bidisperse disks using an algorithm in which we successively grow or shrink soft repulsive disks followed by energy minimization until the overlaps are vanishingly small. We focus on small systems because this enables us to enumerate nearly all distinct MS packings. We measure the probability to obtain a MS packing at packing fraction Ï•\phi and find several notable results. First, the probability is highly nonuniform. When averaged over narrow packing fraction intervals, the most probable MS packing occurs at the highest Ï•\phi and the probability decays exponentially with decreasing Ï•\phi. Even more striking, within each packing-fraction interval, the probability can vary by many orders of magnitude. By using two different packing-generation protocols, we show that these results are robust and the packing frequencies do not change qualitatively with different protocols.Comment: 4 pages, 3 figures, Conference Proceedings for X International Workshop on Disordered System

    Wigner crystal model of counterion induced bundle formation of rod-like polyelectrolytes

    Full text link
    A simple electrostatic theory of condensation of rod-like polyelectrolytes under influence of polyvalent ions is proposed. It is based on the idea that Manning condensation of ions results in formation of the Wigner crystal on a background of a bundle of rods. It is shown that, depending on a single dimensionless parameter, this can be the densely packed three-dimensional Wigner crystal or the two-dimensional crystal on the rod surfaces. For DNA the location of charge on the spiral results in a model of the one-dimensional Wigner crystal. It is also argued that the Wigner crystal idea can be applied to self-assembly of other polyelectrolytes, for example, colloids and DNA-lipid complexes.Comment: 4 pages; typos corrected, references adde

    Decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation

    Get PDF
    We study the decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation. Our approach for unquenching the theory is based on the heavy baryon perturbation theory in which the axial couplings for baryon - meson and the meson-meson-photon couplings from the chiral perturbation theory are used together with the QM moment couplings. It also involves the introduction of a form factor characterizing the structure of baryons considered as composite particles. Using the parameters obtained from fitting the octet baryon magnetic moments, we predict the decuplet baryon magnetic moments. The Ω−\Omega^- magnetic moment is found to be in good agreement with experiment: μΩ−\mu_{\Omega^-} is predicted to be −1.97μN-1.97 \mu_N compared to the experimental result of (−-2.02 ±\pm 0.05) μN\mu_N.Comment: 19 pages, 2 figure
    • …
    corecore