3 research outputs found

    Automated Analysis of Basal Ganglia Intensity Distribution in Multisequence MRI of the Brain - Application to Creutzfeldt-Jakob Disease

    Get PDF
    We present a method for the analysis of basal ganglia (including the thalamus) for accurate detection of human spongiform encephalopathy in multisequence MRI of the brain. One common feature of most forms of prion protein infections is the appearance of hyperintensities in the deep grey matter area of the brain in T2-weighted MR images. We employ T1, T2 and Flair-T2 MR sequences for the detection of intensity deviations in the internal nuclei. First, the MR data is registered to a probabilistic atlas and normalised in intensity. Then smoothing is applied with edge enhancement. The segmentation of hyperintensities is performed using a model of the human visual system. For more accurate results, a priori anatomical data from a segmented atlas is employed to refine the registration and remove false positives. The results are robust over the patient data and in accordance to the clinical ground truth. Our method further allows the quantification of intensity distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis of sporadic Creutzfeldt-Jakob Disease (CJD), in agreement with the histological data. The algorithm permitted to classify the intensities of abnormal signals in sporadic CJD patient FLAIR images with a more significant hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. Using normalised measures of the intensity relations between the internal grey nuclei of patients, we robustly differentiate sporadic CJD and new-variant CJD patients, as a first attempt towards an automatic classification tool of human spongiform encephalopathies

    Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease

    Get PDF
    Sporadic Creutzfeldt-Jakob disease is a fatal neurodegenerative disease caused by misfolded prion proteins (PrPSc). Effective therapeutics are currently not available and accurate diagnosis can be challenging. Clinical diagnostic criteria use a combination of characteristic neuropsychiatric symptoms, CSF proteins 14-3-3, MRI, and EEG. Supportive biomarkers, such as high CSF total tau, could aid the diagnostic process. However, discordant studies have led to controversies about the clinical value of some established surrogate biomarkers. Development and clinical application of disease-specific protein aggregation and amplification assays, such as real-time quaking induced conversion (RT-QuIC), have constituted major breakthroughs for the confident pre-mortem diagnosis of sporadic Creutzfeldt-Jakob disease. Updated criteria for the diagnosis of sporadic Creutzfeldt-Jakob disease, including application of RT-QuIC, should improve early clinical confirmation, surveillance, assessment of PrPSc seeding activity in different tissues, and trial monitoring. Moreover, emerging blood-based, prognostic, and potentially pre-symptomatic biomarker candidates are under investigation

    Epigenetic control of the Notch and Eph signaling pathways by the prion protein: implications for prion diseases

    No full text
    International audienceAmong the ever-growing number of self-replicating proteins involved in neurodegenerative diseases, the prion protein PrP remains the most infamous for its central role in transmissible spongiform encephalopathies (TSEs). In these diseases, pathogenic prions propagate through a seeding mechanism, where normal PrPC molecules are converted into abnormally folded scrapie isoforms termed PrPSc. Since its discovery over 30 years ago, much advance has contributed to define the host-encoded cellular prion protein PrPC as a critical relay of prion-induced neuronal cell demise. A current consensual view is that the conversion of PrPC into PrPSc in neuronal cells diverts the former from its normal function with subsequent molecular alterations affecting synaptic plasticity. Here, we report that prion infection is associated with reduced expression of key effectors of the Notch pathway in vitro and in vivo, recapitulating changes fostered by the absence of PrPC. We further show that both prion infection and PrPC depletion promote drastic alterations in the expression of a defined set of Eph receptors and their ephrin ligands, which represent important players in synaptic function. Our data indicate that defects in the Notch and Eph axes can be mitigated in response to histone deacetylase inhibition in PrPC-depleted as well as prion-infected cells. We thus conclude that infectious prions cause a loss-of-function phenotype with respect to Notch and Eph signaling and that these alterations are sustained by epigenetic mechanisms
    corecore