49,998 research outputs found

    Collective Dynamics of Random Polyampholytes

    Full text link
    We consider the Langevin dynamics of a semi-dilute system of chains which are random polyampholytes of average monomer charge qq and with a fluctuations in this charge of the size Q1Q^{-1} and with freely floating counter-ions in the surrounding. We cast the dynamics into the functional integral formalism and average over the quenched charge distribution in order to compute the dynamic structure factor and the effective collective potential matrix. The results are given for small charge fluctuations. In the limit of finite qq we then find that the scattering approaches the limit of polyelectrolyte solutions.Comment: 13 pages including 6 figures, submitted J. Chem. Phy

    Fast analytical methods for the correction of signal random time-shifts and application to segmented HPGe detectors

    Full text link
    Detection systems rely more and more on on-line or off-line comparison of detected signals with basis signals in order to determine the characteristics of the impinging particles. Unfortunately, these comparisons are very sensitive to the random time shifts that may alter the signal delivered by the detectors. We present two fast algebraic methods to determine the value of the time shift and to enhance the reliability of the comparison to the basis signals.Comment: 13 pages, 8 figure

    Kolmogorov-Smirnov method for the determination of signal time-shifts

    Full text link
    A new method for the determination of electric signal time-shifts is introduced. As the Kolmogorov-Smirnov test, it is based on the comparison of the cumulative distribution functions of the reference signal with the test signal. This method is very fast and thus well suited for on-line applications. It is robust to noise and its performances in terms of precision are excellent for time-shifts ranging from a fraction to several sample durations. PACS. 29.40.Gx (Tracking and position-sensitive detectors), 29.30.Kv (X- and -ray spectroscopy), 07.50.Qx (Signal processing electronics)Comment: 8 pages, 7 figure

    Interference Effects Due to Commensurate Electron Trajectories and Topological Crossovers in (TMTSF)2ClO4

    Full text link
    We report angle-dependent magnetoresistance measurements on (TMTSF)2ClO4 that provide strong support for a new macroscopic quantum phenomenon, the interference commensurate (IC) effect, in quasi-one dimensional metals. In addition to observing rich magnetoresistance oscillations, and fitting them with one-electron calculations, we observe a clear demarcation of field-dependent behavior at local resistance minima and maxima (versus field angle). Anticipated by a theoretical treatment of the IC effect in terms of Bragg reflections in the extended Brillouin zone, this behavior results from 1D-2D topological crossovers of electron wave functions as a function of field orientation.Comment: 14 page

    Antonio Gramsci’s impact on critical pedagogy

    Get PDF
    This paper provides an account of Antonio Gramsci’s impact on the area of critical pedagogy. It indicates the Gramscian influence on the thinking of major exponents of the field. It foregrounds Gramsci's ideas and then indicates how they have been taken up by a selection of critical pedagogy exponents who were chosen on the strength of their identification and engagement with Gramsci's ideas, some of them even having written entire essays on Gramsci. The essay concludes with a discussion concerning an aspect of Gramsci's concerns, the question of powerful knowledge, which, in the present author's view, provides a formidable challenge to critical pedagogues.peer-reviewe

    Exactly Solvable Pairing Model Using an Extension of Richardson-Gaudin Approach

    Full text link
    We introduce a new class of exactly solvable boson pairing models using the technique of Richardson and Gaudin. Analytical expressions for all energy eigenvalues and first few energy eigenstates are given. In addition, another solution to Gaudin's equation is also mentioned. A relation with the Calogero-Sutherland model is suggested.Comment: 9 pages of Latex. In the proceedings of Blueprints for the Nucleus: From First Principles to Collective Motion: A Festschrift in Honor of Professor Bruce Barrett, Istanbul, Turkey, 17-23 May 200

    1/t pressure and fermion behaviour of water in two dimensions

    Full text link
    A variety of metal vacuum systems display the celebrated 1/t pressure, namely power-law dependence on time t, with the exponent close to unity, the origin of which has been a long-standing controversy. Here we propose a chemisorption model for water adsorbates, based on the argument for fermion behaviour of water vapour adsorbed on a stainless-steel surface, and obtain analytically the power-law behaviour of pressure, with an exponent of unity. Further, the model predicts that the pressure should depend on the temperature T according to T^(3/2), which is indeed confirmed by our experiment. Our results should help elucidate the unique characteristics of the adsorbed water.Comment: 11 pages, 4 figure

    Size dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charges on spectral diffusion

    Get PDF
    Making use of droplet epitaxy, we systematically controlled the height of self-assembled GaAs quantum dots by more than one order of magnitude. The photoluminescence spectra of single quantum dots revealed the strong dependence of the spectral linewidth on the dot height. Tall dots with a height of ~30 nm showed broad spectral peaks with an average width as large as ~5 meV, but shallow dots with a height of ~2 nm showed resolution-limited spectral lines (<120 micro eV). The measured height dependence of the linewidths is in good agreement with Stark coefficients calculated for the experimental shape variation. We attribute the microscopic source of fluctuating electric fields to the random motion of surface charges at the vacuum-semiconductor interface. Our results offer guidelines for creating frequency-locked photon sources, which will serve as key devices for long-distance quantum key distribution.Comment: 6 pages, 6 figures; updated figs and their description

    Singular Cucker-Smale Dynamics

    Full text link
    The existing state of the art for singular models of flocking is overviewed, starting from microscopic model of Cucker and Smale with singular communication weight, through its mesoscopic mean-filed limit, up to the corresponding macroscopic regime. For the microscopic Cucker-Smale (CS) model, the collision-avoidance phenomenon is discussed, also in the presence of bonding forces and the decentralized control. For the kinetic mean-field model, the existence of global-in-time measure-valued solutions, with a special emphasis on a weak atomic uniqueness of solutions is sketched. Ultimately, for the macroscopic singular model, the summary of the existence results for the Euler-type alignment system is provided, including existence of strong solutions on one-dimensional torus, and the extension of this result to higher dimensions upon restriction on the smallness of initial data. Additionally, the pressureless Navier-Stokes-type system corresponding to particular choice of alignment kernel is presented, and compared - analytically and numerically - to the porous medium equation
    corecore