39 research outputs found
Insulin-like growth factors and insulin control a multifunctional signalling network of significant importance in cancer
Insulin-like growth factor (IGF) and insulin (INS) proteins regulate key cellular functions through a complex interacting multi-component molecular network, known as the IGF/INS axis. We describe how dynamic and multilayer interactions give rise to the multifunctional role of the IGF/INS axis. Furthermore, we summarise the importance of the regulatory IGF/INS network in cancer, and discuss the possibilities and limitations of therapies targeting the IGF/INS axis with reference to ongoing clinical trials concerning the blockage of IGF1R in several types of cancer
Induction of Bcl-2 Expression by Hepatitis B Virus Pre-S2 Mutant Large Surface Protein Resistance to 5-Fluorouracil Treatment in Huh-7 Cells
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. Our previous studies have indicated that expression of Hepatitis B virus pre-S2 large mutant surface antigen (HBV pre-S2Δ) is associated with a significant risk of developing HCC. However, the relationship between HBV pre-S2Δ protein and the resistance of chemotherapeutic drug treatment is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that the expression of HBV pre-S2Δ mutant surface protein in Huh-7 cell significantly promoted cell growth and colony formation. Furthermore, HBV pre-S2Δ protein increased both mRNA (2.7±0.5-fold vs. vehicle, p=0.05) and protein (3.2±0.3-fold vs. vehicle, p=0.01) levels of Bcl-2 in Huh-7 cells. HBV pre-S2Δ protein also enhances Bcl-2 family, Bcl-xL and Mcl-1, expression in Huh-7 cells. Meanwhile, induction of NF-κB p65, ERK, and Akt phosphorylation, and GRP78 expression, an unfolded protein response chaperone, were observed in HBV pre-S2Δ and HBV pre-S-expressing cells. Induction of Bcl-2 expression by HBV pre-S2Δ protein resulted in resistance to 5-fluorouracil treatment in colony formation, caspase-3 assay, and cell apoptosis, and can enhance cell death by co-incubation with Bcl-2 inhibitor. Similarly, transgenic mice showed higher expression of Bcl-2 in liver tissue expressing HBV pre-S2Δ large surface protein in vivo. CONCLUSION/SIGNIFICANCE: Our result demonstrates that HBV pre-S2Δ increased Bcl-2 expression which plays an important role in resistance to 5-fluorouracil-caused cell death. Therefore, these data provide an important chemotherapeutic strategy in HBV pre-S2Δ-associated tumor
Identification of Critical Amino Acids in an Immunodominant IgE Epitope of Pen c 13, a Major Allergen from Penicillium citrinum
Background: Pen c 13, identified as a 33-kDa alkaline serine protease, is a major allergen secreted by Penicillium citrinum. Detailed knowledge about the epitopes responsible for IgE binding would help inform the diagnosis/prognosis of fungal allergy and facilitate the rational design of hypoallergenic candidate vaccines. The goal of the present study was to characterize the IgE epitopes of Pen c 13. Methodology/Principal Findings: Serum samples were collected from 10 patients with mold allergy and positive Pen c 13 skin test results. IgE-binding epitopes on rPen c 13 were mapped using an enzymatic digestion and chemical cleavage method, followed by dot-blotting and mass spectrometry. A B-cell epitope-predicting server and molecular modeling were used to predict the residues most likely involved in IgE binding. Theoretically predicted IgE-binding regions were further confirmed by site-directed mutagenesis assays. At least twelve different IgE-binding epitopes located throughout Pen c 13 were identified. Of these, peptides S16 (A 148 –E 166) and S22 (A 243 –K 274) were recognized by sera from 90 % and 100 % of the patients tested, and were further confirmed by inhibition assays. Peptide S22 was selected for further analysis of IgE-binding ability. The results of serum screening showed that the majority of IgE-binding ability resided in the C-terminus. One Pen c 13 mutant, G270A (T 261 –K 274), exhibited clearly enhanced IgE reactivity, whereas another, K274A, exhibited dramatically reduced IgE reactivity
Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans
In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex
Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly
Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms
Protein-tyrosine phosphatase D1, a potential regulator and effector for Tec family kinases
[[abstract]]Etk, also named Bmx, is a member of the Tec tyrosine kinase family, which is characterized by a multimodular structure including a pleckstrin homology (PH) domain, an SH3 domain, an SH2 domain, and a catalytic domain. The signaling mechanisms regulating Etk kinase activity remain largely unknown. To identify factor(s) regulating Etk activity, we used the PH domain and a linker region of Etk as a bait for a yeast two-hybrid screen. Three independent clones encoding protein-tyrosine phosphatase D1 (PTPD1) fragments were isolated. The binding of PTPD1 to Etk is specific since PTPD1 cannot associate with either the Akt PH domain or lamin. In vitro and in vivo binding studies demonstrated that PTPD1 can interact with Etk and that residues 726-848 of PTPD1 are essential for this interaction. Deletion analysis of Etk indicated that the PH domain is essential for PTPD1 interaction. Furthermore, the Etk-PTPD1 interaction stimulated the kinase activity of Etk, resulting in an increased phosphotyrosine content in both factors. The Etk-PTPD1 interaction also increased Stat3 activation. The-effect of PTPD1 on Etk activation is specific since PTPD1 cannot potentiate Jak2 activity upon Stat3 activation In addition, Tec (but not Btk) kinase can also be activated by PTPD1. Taken together, these findings indicate that PTPD1 can selectively associate with and stimulate Tec family kinases and modulate Stat3 activation
Autologous mesenchymal stem cells prevent transplant arteriosclerosis by enhancing local expression of interleukin-10, interferon-gamma, and indoleamine 2,3-dioxygenase
[[abstract]]Transplant arteriosclerosis (TA) remains the major limitation of long-term graft survival in heart transplantation despite the advances in immunosuppressants. Mesenchymal stem cells (MSCs) have been demonstrated to suppress allogeneic immune responses by numerous in vitro studies. However, the immunomodulatory effects of MSCs in vivo are controversial and the molecular mechanisms underlying are not conclusive. In this study, we investigated the therapeutic potential of autologous bone marrow-derived MSCs on TA in a porcine model of femoral artery transplantation. MSCs or saline were injected into the soft tissue surrounding the arterial grafts immediately post anastomosis. Four weeks after transplantation, neointimal formation increased significantly in untreated allografts compared with the MSC-treated grafts as assessed by intravascular ultrasound (maximum luminal area stenosis: 40 +/- 12% versus 18 +/- 6%, p < 0.001). Grafts harvested at 4 weeks showed dense perivascular lymphocyte infiltration accompanied by significant intimal hyperplasia in the untreated but not in the MSC-treated allografts. Serial angiographic examination showed that all of the untreated allografts became occluded at the 8th week whereas the majority of the MSC-treated grafts remained patent at the 12th week post transplantation (n = 12 each group, p < 0.001). Quantitative PCR analysis revealed that Foxp3 expression was comparable between the untreated and the MSC-treated groups. However, expression of interleukin-10 (IL-10), interferon- gamma (IFN- gamma), and indoleamine 2,3-dioxygenase (IDO) was increased significantly in the MSC-treated allografts compared with that in the allograft controls (p = 0.015 for IL-10, p < 0.001 for IFN- gamma, and p = 0.011 for IDO). In conclusion, local delivery of autologous MSCs alleviates TA by inducing allograft tolerance via enhanced expression of IL-10, IFN-gamma and IDO but not Foxp3-positive cells in the vessel wall. These results suggest that MSCs induce immune tolerance by activating the type 1 regulatory T-like cells