145 research outputs found

    Decellularization of chondrocyte-encapsulated collagen microspheres: A three-dimensional model to study the effects of acellular matrix on stem cell fate

    Get PDF
    Extracellular matrix (ECM) partially constitutes the stem cell niche. Reconstituting the ECM niche in a three-dimensional (3D) configuration will significantly enhance our understanding of how stem cells interact with and respond to the ECM niche. In this study, we aimed to reconstitute a glycosaminoglycan (GAG)-rich ECM using a microencapsulation technology, produce acellular matrix using a decellularization technique, and investigate the effect of acellular matrix on stem cell fate by repopulating the matrix with human mesenchymal stem cells (hMSCs). We demonstrated that porcine chondrocytes were able to deposit a GAG-rich ECM within the 3D collagen microsphere. All decellularization treatment groups resulted in significant removal of chondrocyte nuclei, but acellular matrix was only achieved using 2% sodium deoxycholate. Nevertheless, decellularization resulted in significant loss in GAG content in almost all treatment groups, and the 2% sodium deoxycholate group was able to preserve about 40% of the GAGs compared with the control group. We further demonstrated that hMSCs seeded onto the decellularized microspheres were able to survive and penetrate into the centre, while hMSCs seeded in the acellular matrix showed positive immunostaining against sox9, indicating that they may be differentiating toward the chondrogenic lineage without the need to supplement the chondrogenic differentiation medium. © 2009 Mary Ann Liebert, Inc.published_or_final_versio

    Dehydroepiandrosterone (DHEA) supplementation improves in vitro fertilization outcomes of poor ovarian responders, especially in women with low serum concentration of DHEA-S: a retrospective cohort study

    Get PDF
    Background: Dehydroepiandrosterone (DHEA) is now widely used as an adjuvant for in vitro fertilization (IVF) cycles in poor ovarian responders (PORs). Several studies showed that DHEA supplementation could improve IVF outcomes of PORs. However, most of the PORs do not respond to DHEA clinically. Therefore, the aim of this study is to confirm the beneficial effects of DHEA on IVF outcomes of PORs and to investigate which subgroups of PORs can best benefit from DHEA supplementation. Methods: This retrospective cohort study was performed between January 2015 and December 2017. A total of 151 PORs who fulfilled the Bologna criteria and underwent IVF cycles with the gonadotropin-releasing hormone antagonist protocol were identified. The study group (n = 67) received 90 mg of DHEA daily for an average of 3 months before the IVF cycles. The control group (n = 84) underwent the IVF cycles without DHEA pretreatment. The basic and cycle characteristics and IVF outcomes between the two groups were compared using independent t-tests, Chi-Square tests and binary logistic regression. Results: The study and control groups did not show significant differences in terms of basic characteristics. The study group demonstrated a significantly greater number of retrieved oocytes, metaphase II oocytes, fertilized oocytes, day 3 embryos and top-quality embryos at day 3 and a higher clinical pregnancy rate, ongoing pregnancy rate and live birth rate than those measures in the control group. The multivariate analysis revealed that DHEA supplementation was positively associated with clinical pregnancy rate (OR = 4.93, 95% CI 1.68–14.43, p = 0.004). Additionally, in the study group, the multivariate analysis showed that serum dehydroepiandrosterone-sulfate (DHEA-S) levels < 180 μg/dl were significantly associated with a rate of retrieved oocytes > 3 (OR = 5.92, 95% CI 1.48–23.26, p = 0.012). Conclusions: DHEA supplementation improves IVF outcomes of PORs. In PORs with DHEA pretreatment, women with lower DHEA-S level may have greater possibility of attaining more than 3 oocytes

    The Quantized Hall Insulator: A New Insulator in Two-Dimensions

    Full text link
    Quite generally, an insulator is theoretically defined by a vanishing conductivity tensor at the absolute zero of temperature. In classical insulators, such as band insulators, vanishing conductivities lead to diverging resistivities. In other insulators, in particular when a high magnetic field (B) is added, it is possible that while the magneto-resistance diverges, the Hall resistance remains finite, which is known as a Hall insulator. In this letter we demonstrate experimentally the existence of another, more exotic, insulator. This insulator, which terminates the quantum Hall effect series in a two-dimensional electron system, is characterized by a Hall resistance which is approximately quantized in the quantum unit of resistance h/e^2. This insulator is termed a quantized Hall insulator. In addition we show that for the same sample, the insulating state preceding the QHE series, at low-B, is of the HI kind.Comment: 4 page

    Wigner Crystallization in a Quasi-3D Electronic System

    Full text link
    When a strong magnetic field is applied perpendicularly (along z) to a sheet confining electrons to two dimensions (x-y), highly correlated states emerge as a result of the interplay between electron-electron interactions, confinement and disorder. These so-called fractional quantum Hall (FQH) liquids form a series of states which ultimately give way to a periodic electron solid that crystallizes at high magnetic fields. This quantum phase of electrons has been identified previously as a disorder-pinned two-dimensional Wigner crystal with broken translational symmetry in the x-y plane. Here, we report our discovery of a new insulating quantum phase of electrons when a very high magnetic field, up to 45T, is applied in a geometry parallel (y-direction) to the two-dimensional electron sheet. Our data point towards this new quantum phase being an electron solid in a "quasi-3D" configuration induced by orbital coupling with the parallel field

    A Realistic Radiative Fermion Mass Hierarchy in Non-supersymmetric SO(10)

    Full text link
    A non-supersymmetric grand unified theory can exhibit a "radiative fermion mass hierarchy", in which the heavier quarks and leptons get mass at tree level and the lighter ones get mass from loop diagrams. Recently the first predictive model of this type was proposed. Here it is analyzed numerically and it is shown to give an excellent fit to the quark and lepton masses and mixings, including the CP phase violating phase δCKM\delta_{CKM}. A relation between the neutrino angle θ13\theta_{13} and the atmospheric neutrino angle is obtainedComment: 13 pages, 4 figures, RevTeX

    Nuclear Targeting of IGF-1 Receptor in Orbital Fibroblasts from Graves' Disease: Apparent Role of ADAM17

    Get PDF
    Insulin-like growth factor-1 receptor (IGF-1R) comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD). When activated by IGF-1 or GD-derived IgG (GD-IgG), these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with 125I IGF-1, 125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis

    Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Zymomonas mobilis </it>ZM4 (ZM4) produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. <it>Z. mobilis </it>performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly.</p> <p>Results</p> <p>In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point.</p> <p>Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED) pathway genes (<it>glk, zwf, pgl, pgk, and eno</it>) and gene <it>pdc</it>, encoding a key enzyme leading to ethanol production, were at least 30-fold more abundant under anaerobic conditions in the stationary phase based on quantitative-PCR results. We also identified differentially expressed ZM4 genes predicted by The Institute for Genomic Research (TIGR) that were not predicted in the primary annotation.</p> <p>Conclusion</p> <p>High oxygen concentrations present during <it>Z. mobilis </it>fermentations negatively influence fermentation performance. The maximum specific growth rates were not dramatically different between aerobic and anaerobic conditions, yet oxygen did affect the physiology of the cells leading to the buildup of metabolic byproducts that ultimately led to greater differences in transcriptomic profiles in stationary phase.</p
    corecore