175 research outputs found

    From planning the port/city to planning the port-city : exploring the economic interface in European port cities

    Get PDF
    In last three decades, planning agencies of most ports have institutionally evolved into a (semi-) independent port authority. The rationale behind this process is that port authorities are able to react more quickly to changing logistical and spatial preferences of maritime firms, hence increasing the competitiveness of ports. Although these dedicated port authorities have proven to be largely successful, new economic, social, and environmental challenges are quickly catching up on these port governance models, and particularly leads to (spatial) policy ‘conflicts’ between port and city. This chapter starts by assessing this conflict and argue that the conflict is partly a result of dominant—often also academic—spatial representations of the port city as two separate entities. To escape this divisive conception of contemporary port cities, this chapter presents a relational visualisation method that is able to analyse the economic interface between port and city. Based on our results, we reflect back on our proposition and argue that the core challenge today for researchers and policy makers is acknowledging the bias of port/city, being arguably a self-fulfilling prophecy. Hence, we turn the idea of (planning the) port/city conflicts into planning the port-city’s strengths and weaknesses

    The Cyanobacterial Hepatotoxin Microcystin Binds to Proteins and Increases the Fitness of Microcystis under Oxidative Stress Conditions

    Get PDF
    Microcystins are cyanobacterial toxins that represent a serious threat to drinking water and recreational lakes worldwide. Here, we show that microcystin fulfils an important function within cells of its natural producer Microcystis. The microcystin deficient mutant ΔmcyB showed significant changes in the accumulation of proteins, including several enzymes of the Calvin cycle, phycobiliproteins and two NADPH-dependent reductases. We have discovered that microcystin binds to a number of these proteins in vivo and that the binding is strongly enhanced under high light and oxidative stress conditions. The nature of this binding was studied using extracts of a microcystin-deficient mutant in vitro. The data obtained provided clear evidence for a covalent interaction of the toxin with cysteine residues of proteins. A detailed investigation of one of the binding partners, the large subunit of RubisCO showed a lower susceptibility to proteases in the presence of microcystin in the wild type. Finally, the mutant defective in microcystin production exhibited a clearly increased sensitivity under high light conditions and after hydrogen peroxide treatment. Taken together, our data suggest a protein-modulating role for microcystin within the producing cell, which represents a new addition to the catalogue of functions that have been discussed for microbial secondary metabolites

    Diagnosis and treatment of musculoskeletal chest pain: design of a multi-purpose trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute chest pain is a major health problem all over the western world. Active approaches are directed towards diagnosis and treatment of potentially life threatening conditions, especially acute coronary syndrome/ischemic heart disease. However, according to the literature, chest pain may also be due to a variety of extra-cardiac disorders including dysfunction of muscles and joints of the chest wall or the cervical and thoracic part of the spine. The diagnostic approaches and treatment options for this group of patients are scarce and formal clinical studies addressing the effect of various treatments are lacking.</p> <p>Methods/Design</p> <p>We present an ongoing trial on the potential usefulness of chiropractic diagnosis and treatment in patients dismissed from an acute chest pain clinic without a diagnosis of acute coronary syndrome. The aims are to determine the proportion of patients in whom chest pain may be of musculoskeletal rather than cardiac origin and to investigate the decision process of a chiropractor in diagnosing these patients; further, to examine whether chiropractic treatment can reduce pain and improve physical function when compared to advice directed towards promoting self-management, and, finally, to estimate the cost-effectiveness of these procedures. This study will include 300 patients discharged from a university hospital acute chest pain clinic without a diagnosis of acute coronary syndrome or any other obvious cardiac or non-cardiac disease. After completion of the clinic's standard cardiovascular diagnostic procedures, trial patients will be examined according to a standardized protocol including a) a self-report questionnaire; b) a semi-structured interview; c) a general health examination; and d) a specific manual examination of the muscles and joints of the neck, thoracic spine, and thorax in order to determine whether the pain is likely to be of musculoskeletal origin. To describe the patients status with regards to ischemic heart disease, and to compare and indirectly validate the musculoskeletal diagnosis, myocardial perfusion scintigraphy is performed in all patients 2–4 weeks following discharge. Descriptive statistics including parametric and non-parametric methods will be applied in order to compare patients with and without musculoskeletal chest pain in relation to their scintigraphic findings. The decision making process of the chiropractor will be elucidated and reconstructed using the CART method. Out of the 300 patients 120 intended patients with suspected musculoskeletal chest pain will be randomized into one of two groups: a) a course of chiropractic treatment (therapy group) of up to ten treatment sessions focusing on high velocity, low amplitude manipulation of the cervical and thoracic spine, mobilisation, and soft tissue techniques. b) Advice promoting self-management and individual instructions focusing on posture and muscle stretch (advice group). Outcome measures are pain, physical function, overall health, self-perceived treatment effect, and cost-effectiveness.</p> <p>Discussion</p> <p>This study may potentially demonstrate that a chiropractor is able to identify a subset of patients suffering from chest pain predominantly of musculoskeletal origin among patients discharged from an acute chest pain clinic with no apparent cardiac condition. Furthermore knowledge about the benefits of manual treatment of patients with musculoskeletal chest pain will inform clinical decision and policy development in relation to clinical practice.</p> <p>Trial registration</p> <p>NCT00462241 and NCT00373828</p

    Genetic Determinants of Phosphate Response in Drosophila

    Get PDF
    Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired Malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels

    Natural Regulatory T Cells in Malaria: Host or Parasite Allies?

    Get PDF
    Plasmodium falciparum malaria causes 500 million clinical cases with approximately one million deaths each year. After many years of exposure, individuals living in endemic areas develop a form of clinical immunity to disease known as premunition, which is characterised by low parasite burdens rather than sterilising immunity. The reason why malaria parasites persist under a state of premunition is unknown but it has been suggested that suppression of protective immunity might be a mechanism leading to parasite persistence. Although acquired immunity limits the clinical impact of infection and provides protection against parasite replication, experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to the aetiology of severe disease. Thus, an appropriate regulatory balance between protective immune responses and immune-mediated pathology is required for a favourable outcome of infection. As natural regulatory T (Treg) cells are identified as an immunosuppressive lineage able to modulate the magnitude of effector responses, several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during malaria. The main findings to date are summarised in this review and the implication for the induction of pathogenesis and immunity to malaria is discussed

    The human keratins: biology and pathology

    Get PDF
    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family
    corecore