65 research outputs found

    CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes

    Get PDF
    CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene

    Applied immuno-epidemiological research: an approach for integrating existing knowledge into the statistical analysis of multiple immune markers.

    Get PDF
    BACKGROUND: Immunologists often measure several correlated immunological markers, such as concentrations of different cytokines produced by different immune cells and/or measured under different conditions, to draw insights from complex immunological mechanisms. Although there have been recent methodological efforts to improve the statistical analysis of immunological data, a framework is still needed for the simultaneous analysis of multiple, often correlated, immune markers. This framework would allow the immunologists' hypotheses about the underlying biological mechanisms to be integrated. RESULTS: We present an analytical approach for statistical analysis of correlated immune markers, such as those commonly collected in modern immuno-epidemiological studies. We demonstrate i) how to deal with interdependencies among multiple measurements of the same immune marker, ii) how to analyse association patterns among different markers, iii) how to aggregate different measures and/or markers to immunological summary scores, iv) how to model the inter-relationships among these scores, and v) how to use these scores in epidemiological association analyses. We illustrate the application of our approach to multiple cytokine measurements from 818 children enrolled in a large immuno-epidemiological study (SCAALA Salvador), which aimed to quantify the major immunological mechanisms underlying atopic diseases or asthma. We demonstrate how to aggregate systematically the information captured in multiple cytokine measurements to immunological summary scores aimed at reflecting the presumed underlying immunological mechanisms (Th1/Th2 balance and immune regulatory network). We show how these aggregated immune scores can be used as predictors in regression models with outcomes of immunological studies (e.g. specific IgE) and compare the results to those obtained by a traditional multivariate regression approach. CONCLUSION: The proposed analytical approach may be especially useful to quantify complex immune responses in immuno-epidemiological studies, where investigators examine the relationship among epidemiological patterns, immune response, and disease outcomes

    Sampling strategies to measure the prevalence of common recurrent infections in longitudinal studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Measuring recurrent infections such as diarrhoea or respiratory infections in epidemiological studies is a methodological challenge. Problems in measuring the incidence of recurrent infections include the episode definition, recall error, and the logistics of close follow up. Longitudinal prevalence (LP), the proportion-of-time-ill estimated by repeated prevalence measurements, is an alternative measure to incidence of recurrent infections. In contrast to incidence which usually requires continuous sampling, LP can be measured at intervals. This study explored how many more participants are needed for infrequent sampling to achieve the same study power as frequent sampling.</p> <p>Methods</p> <p>We developed a set of four empirical simulation models representing low and high risk settings with short or long episode durations. The model was used to evaluate different sampling strategies with different assumptions on recall period and recall error.</p> <p>Results</p> <p>The model identified three major factors that influence sampling strategies: (1) the clustering of episodes in individuals; (2) the duration of episodes; (3) the positive correlation between an individual's disease incidence and episode duration. Intermittent sampling (e.g. 12 times per year) often requires only a slightly larger sample size compared to continuous sampling, especially in cluster-randomized trials. The collection of period prevalence data can lead to highly biased effect estimates if the exposure variable is associated with episode duration. To maximize study power, recall periods of 3 to 7 days may be preferable over shorter periods, even if this leads to inaccuracy in the prevalence estimates.</p> <p>Conclusion</p> <p>Choosing the optimal approach to measure recurrent infections in epidemiological studies depends on the setting, the study objectives, study design and budget constraints. Sampling at intervals can contribute to making epidemiological studies and trials more efficient, valid and cost-effective.</p

    Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluated the cytotoxic and antiproliferative efficacy of two well-characterized members of the Cecropin-family of antimicrobial peptides against bladder tumor cells and benign fibroblasts.</p> <p>Methods</p> <p>The antiproliferative and cytotoxic potential of the Cecropins A and B was quantified by colorimetric WST-1-, BrdU- and LDH-assays in four bladder cancer cell lines as well as in murine and human fibroblast cell lines. IC<sub>50 </sub>values were assessed by logarithmic extrapolation, representing the concentration at which cell viability was reduced by 50%. Scanning electron microscopy (SEM) was performed to visualize the morphological changes induced by Cecropin A and B in bladder tumor cells and fibroblasts.</p> <p>Results</p> <p>Cecropin A and B inhibit bladder cancer cell proliferation and viability in a dose-dependent fashion. The average IC<sub>50 </sub>values of Cecropin A and B against all bladder cancer cell lines ranged between 73.29 μg/ml and 220.05 μg/ml. In contrast, benign fibroblasts were significantly less or not at all susceptible to Cecropin A and B. Both Cecropins induced an increase in LDH release from bladder tumor cells whereas benign fibroblasts were not affected. SEM demonstrated lethal membrane disruption in bladder cancer cells as opposed to fibroblasts.</p> <p>Conclusion</p> <p>Cecropin A and B exert selective cytotoxic and antiproliferative efficacy in bladder cancer cells while sparing targets of benign murine or human fibroblast origin. Both peptides may offer novel therapeutic strategies for the treatment of bladder cancer with limited cytotoxic effects on benign cells.</p

    Efficacy and Safety of Hizentra®, a New 20% Immunoglobulin Preparation for Subcutaneous Administration, in Pediatric Patients with Primary Immunodeficiency

    Get PDF
    Subcutaneous IgG treatment for primary immunodeficiencies (PI) is particularly well suited for children because it does not require venous access and is mostly free of systemic adverse events (AEs). In a prospective, open-label, multicenter, single-arm, Phase III study, 18 children and five adolescents with PI were switched from previous intravenous (IVIG) or subcutaneous (SCIG) IgG treatment to receive dose-equivalent, weekly subcutaneous infusions of Hizentra® for 40 weeks. Mean IgG trough levels were maintained in patients previously on SCIG, or increased in those previously on IVIG, regardless of age. No serious bacterial infections were reported during the efficacy period of the study. The rates of non-serious infections were 4.77 (children) and 5.18 (adolescents) infections per patient per year. Related AEs were observed in seven children (38.9%) and two adolescents (40%). Three serious AEs and two AEs leading to discontinuation (all unrelated) were reported in children. Hizentra® is an effective and well-tolerated treatment for pediatric patients

    Systemic mastocytosis associated with t(8;21)(q22;q22) acute myeloid leukemia

    Get PDF
    Although KIT mutations are present in 20–25% of cases of t(8;21)(q22;q22) acute myeloid leukemia (AML), concurrent development of systemic mastocytosis (SM) is exceedingly rare. We examined the clinicopathologic features of SM associated with t(8;21)(q22;q22) AML in ten patients (six from our institutions and four from published literature) with t(8;21) AML and SM. In the majority of these cases, a definitive diagnosis of SM was made after chemotherapy, when the mast cell infiltrates were prominent. Deletion 9q was an additional cytogenetic abnormality in four cases. Four of the ten patients failed to achieve remission after standard chemotherapy and seven of the ten patients have died of AML. In the two patients who achieved durable remission after allogeneic hematopoietic stem cell transplant, recipient-derived neoplastic bone marrow mast cells persisted despite leukemic remission. SM associated with t(8;21) AML carries a dismal prognosis; therefore, detection of concurrent SM at diagnosis of t(8;21) AML has important prognostic implications

    The differentiation status of primary gonadal germ cell tumors correlates inversely with telomerase activity and the expression level of the gene encoding the catalytic subunit of telomerase

    Get PDF
    BACKGROUND: The activity of the ribonucleoprotein enzyme telomerase is detectable in germ, stem and tumor cells. One major component of telomerase is human telomerase reverse transcriptase (hTERT), which encodes the catalytic subunit of telomerase. Here we investigate the correlation of telomerase activity and hTERT gene expression and the differentiation status of primary testicular germ cell tumors (TGCT). METHODS: Telomerase activity (TA) was detected by a quantitative telomerase PCR ELISA, and hTERT mRNA expression was quantified by online RT-PCR in 42 primary testicular germ cell tumors. The control group consisted of benign testicular biopsies from infertile patients. RESULTS: High levels of telomerase activity and hTERT expression were detected in all examined undifferentiated TGCTs and in the benign testicular tissue specimens with germ cell content. In contrast, differentiated teratomas and testicular control tissue without germ cells (Sertoli-cell-only syndrome) showed no telomerase activity and only minimal hTERT expression. CONCLUSIONS: These findings demonstrate an inverse relationship between the level of telomerase activity and hTERT mRNA expression and the differentiation state of germ cell tumors. Quantification of telomerase activity and hTERT mRNA expression enables a new molecular-diagnostic subclassification of germ cell tumors that describes their proliferation potential and differentiation status

    FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas.

    Get PDF
    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients

    BMP signals and the transcriptional repressor BLIMP1 during germline segregation in the mammalian embryo

    Get PDF
    Molecular factors and tissue compartments involved in the foundation of the mammalian germline have been mainly described in the mouse so far. To find mechanisms applicable to mammals in general, we analyzed temporal and spatial expression patterns of the transcriptional repressor BLIMP1 (also known as PRDM1) and the signaling molecules BMP2 and BMP4 in perigastrulation and early neurulation embryos of the rabbit using whole-mount in situ hybridization and high-resolution light microscopy. Both BMP2 and BMP4 are expressed in annular domains at the boundary of the embryonic disc, which—in contrast to the situation in the mouse—partly belong to intraembryonic tissues. While BMP2 expression begins at (pregastrulation) stage 1 in the hypoblast, BMP4 expression commences—distinctly delayed compared to the mouse—diffusely at (pregastrulation) stage 2; from stage 3 onwards, BMP4 is expressed peripherally in hypoblast and epiblast and in the mesoderm at the posterior pole of the embryonic disc. BLIMP1 expression begins throughout the hypoblast at stage 1 and emerges in single primordial germ cell (PGC) precursors in the posterior epiblast at stage 2 and then in single mesoderm cells at positions identical to those identified by PGC-specific antibodies. These expression patterns suggest that function and chronology of factors involved in germline segregation are similar in mouse and rabbit, but higher temporal and spatial resolution offered by the rabbit demonstrates a variable role of bone morphogenetic proteins and makes “blimping” a candidate case for lateral inhibition without the need for an allantoic germ cell niche

    Synthesis of carbon nanotubes with and without catalyst particles

    Get PDF
    The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition metals such as Fe, Ni, and Co. More recently, noble metals (e.g. Au) and poor metals (e.g. In, Pb) have been shown to also yield carbon nanotubes. In addition, various ceramics and semiconductors can serve as catalytic particles suitable for tube formation and in some cases hybrid metal/metal oxide systems are possible. All-carbon systems for carbon nanotube growth without any catalytic particles have also been demonstrated. These different growth systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon nanotube synthesis
    corecore