20 research outputs found

    Quantitative trait locus analysis identifies Gabra3 as a regulator of behavioral despair in mice

    Get PDF
    The Tail Suspension Test (TST), which measures behavioral despair, is widely used as an animal model of human depressive disorders and antidepressant efficacy. In order to identify novel genes involved in the regulation of TST performance, we crossed an inbred strain exhibiting low immobility in the TST (RIIIS/J) with two high-immobility strains (C57BL/6J and NZB/BlNJ) to create two distinct F2 hybrid populations. All F2 offspring (n = 655) were genotyped at high density with a panel of SNP markers. Whole-genome interval mapping of the F2 populations identified statistically significant quantitative trait loci (QTLs) on mouse chromosomes (MMU) 4, 6, and X. Microarray analysis of hippocampal gene expression in the three parental strains was used to identify potential candidate genes within the MMUX QTLs identified in the NZB/BlNJ × RIIIS/J cross. Expression of Gabra3, which encodes the GABAA receptor α3 subunit, was robust in the hippocampus of B6 and RIIIS mice but absent from NZB hippocampal tissue. To verify the role of Gabra3 in regulating TST behavior in vivo, mice were treated with SB-205384, a positive modulator of the α3 subunit. SB-205384 significantly reduced TST immobility in B6 mice without affecting general activity, but it had no effect on behavior in NZB mice. This work suggests that GABRA3 regulates a behavioral endophenotype of depression and establishes this gene as a viable new target for the study and treatment of human depression

    Phenotypic Characterization of a Genetically Diverse Panel of Mice for Behavioral Despair and Anxiety

    Get PDF
    Animal models of human behavioral endophenotypes, such as the Tail Suspension Test (TST) and the Open Field assay (OF), have proven to be essential tools in revealing the genetics and mechanisms of psychiatric diseases. As in the human disorders they model, the measurements generated in these behavioral assays are significantly impacted by the genetic background of the animals tested. In order to better understand the strain-dependent phenotypic variability endemic to this type of work, and better inform future studies that rely on the data generated by these models, we phenotyped 33 inbred mouse strains for immobility in the TST, a mouse model of behavioral despair, and for activity in the OF, a model of general anxiety and locomotor activity.We identified significant strain-dependent differences in TST immobility, and in thigmotaxis and distance traveled in the OF. These results were replicable over multiple testing sessions and exhibited high heritability. We exploited the heritability of these behavioral traits by using in silico haplotype-based association mapping to identify candidate genes for regulating TST behavior. Two significant loci (-logp >7.0, gFWER adjusted p value <0.05) of approximately 300 kb each on MMU9 and MMU10 were identified. The MMU10 locus is syntenic to a major human depressive disorder QTL on human chromosome 12 and contains several genes that are expressed in brain regions associated with behavioral despair.We report the results of phenotyping a large panel of inbred mouse strains for depression and anxiety-associated behaviors. These results show significant, heritable strain-specific differences in behavior, and should prove to be a valuable resource for the behavioral and genetics communities. Additionally, we used haplotype mapping to identify several loci that may contain genes that regulate behavioral despair

    The differential transcriptome and ontology profiles of floating and cumulus granulosa cells in stimulated human antral follicles

    No full text
    Communication between various ovarian cell types is a prerequisite for folliculogenesis and ovulation. In antral follicles gran-ulosa cells divide into two distinct populations of mural and cumulus granulosa cells (CGC), enveloping the antrum and surrounding the oocyte, respectively. Both cell types, with the mural compartment in excess, contribute to the floating granulosa cell (FGC) population in the follicular fluid. The aim of this study was to compare the transcriptomes of FGC and CGC in stimulated antral follicles obtained from 19 women undergoing IVF-ICSI procedure. FGC were obtained from follicular fluid during the follicle puncture procedure and CGC were acquired after oocyte denudation for micromanipulation. Gene expression analysis was conducted using the genome-wide Affymetrix transcriptome array. The expression profile of the two granulosa cell populations varied significantly. Out of 28 869 analysed transcripts 4480 were differentially expressed (q-value > 10-4) and 489 showed ≥2-fold difference in the expression level with 222 genes up-regulated in FGC and 267 in CGC. The transcriptome of FGC showed higher expression of genes involved in immune response, hematological system function and organismal injury, although CGC had genes involved in protein degradation and nervous system function up-regulated. Cell-to-cell signalling and interaction pathways were noted in both cell populations. Furthermore, numerous novel transcripts that have not been previously described in follicular physiology were identified. In conclusion, our results provide a solid basis for future studies in follicular biology that will help to identify molecular markers for oocyte and embryo viability in IVF. © The Author 2009. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: [email protected]

    Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy.

    No full text
    Energy depletion has been highlighted as an important contributor to the pathology of hypertrophic cardiomyopathy (HCM), a common inherited cardiac disease. Pharmacological reversal of energy depletion appears an attractive approach and the use of perhexiline has been proposed as it is thought to shift myocardial metabolism from fatty acid to glucose utilisation, increasing ATP production and myocardial efficiency. We used the Mybpc3-targeted knock-in mouse model of HCM to investigate changes in the cardiac metabolome following perhexiline treatment. Echocardiography indicated that perhexiline induced partial improvement of some, but not all hypertrophic parameters after six weeks. Non-targeted metabolomics, applying ultra-high performance liquid chromatography-mass spectrometry, described a phenotypic modification of the cardiac metabolome with 272 unique metabolites showing a statistically significant change (p < 0.05). Changes in fatty acids and acyl carnitines indicate altered fatty acid transport into mitochondria, implying reduction in fatty acid beta-oxidation. Increased glucose utilisation is indirectly implied through changes in the glycolytic, glycerol, pentose phosphate, tricarboxylic acid and pantothenate pathways. Depleted reduced glutathione and increased production of NADPH suggest reduction in oxidative stress. These data delineate the metabolic changes occurring during improvement of the HCM phenotype and indicate the requirements for further targeted interventions

    Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy.

    No full text
    Energy depletion has been highlighted as an important contributor to the pathology of hypertrophic cardiomyopathy (HCM), a common inherited cardiac disease. Pharmacological reversal of energy depletion appears an attractive approach and the use of perhexiline has been proposed as it is thought to shift myocardial metabolism from fatty acid to glucose utilisation, increasing ATP production and myocardial efficiency. We used the Mybpc3-targeted knock-in mouse model of HCM to investigate changes in the cardiac metabolome following perhexiline treatment. Echocardiography indicated that perhexiline induced partial improvement of some, but not all hypertrophic parameters after six weeks. Non-targeted metabolomics, applying ultra-high performance liquid chromatography-mass spectrometry, described a phenotypic modification of the cardiac metabolome with 272 unique metabolites showing a statistically significant change (p &lt; 0.05). Changes in fatty acids and acyl carnitines indicate altered fatty acid transport into mitochondria, implying reduction in fatty acid beta-oxidation. Increased glucose utilisation is indirectly implied through changes in the glycolytic, glycerol, pentose phosphate, tricarboxylic acid and pantothenate pathways. Depleted reduced glutathione and increased production of NADPH suggest reduction in oxidative stress. These data delineate the metabolic changes occurring during improvement of the HCM phenotype and indicate the requirements for further targeted interventions
    corecore