3,596 research outputs found
Spectrographic analysis of bismuth-tin eutectic alloys by spark-ignited low-voltage ac-arc excitation
Spectrographic method determines individual stainless steel components in molten bismuth-42 w/o tin eutectic to determine the solubility of Type 304 stainless steels. It utilizes the high sensitivity and precision of the spark-ignited, low-voltage ac-arc excitation of samples rendered homogeneous by dissolution
An Instrument to Assess Client-Server Architecture in an Organizational Setting
This study reports the final results of a delphi panel procedure used to develop an instrument to assess the client-server system architecture in an organization. At present there is no formal instrument that allows an information systems manager to assess an existing CSS architecture. A delphi panel was used to develop a formal instrument for CSS assessment
Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity
We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3D organotypic epithelialstromal cultures that require an airliquid interface. These complex 3D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an airliquid interface, these 3D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissuelike human epithelialstromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for airliquid, liquidliquid, and liquidair exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of addon capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program
Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture
Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would otherwise die or be rendered reproductively inactive in 2-D culture
Reducing Polarization Mode Dispersion With Controlled Polarization Rotations
One of the fundamental limitations to high bit rate, long distance,
telecommunication in optical fibers is Polarization Mode Dispersion (PMD). Here
we introduce a conceptually new method to reduce PMD in optical fibers by
carrying out controlled rotations of polarization at predetermined locations
along the fiber. The distance between these controlled polarization rotations
must be less than both the beat length and the mode coupling length of the
fiber. This method can also be combined with the method in which the fiber is
spun while it drawn. The incidence of imperfections on the efficiency of the
method is analysed.Comment: 4 page
Flutter analysis of a supersonic cascade in time domain using an ADI Euler solver
The aeroelastic stability of a two-dimensional cascade oscillating in supersonic axial flow is analyzed in the time domain. The aeroelastic model consists of a single degree of freedom typical section structural model for each blade of the cascade and an unsteady two-dimensional cascade aerodynamic model based on the Euler equations. The Euler equations are solved using a time accurate Alternating Direction Implicit (ADI) solution scheme. The aeroelastic equations are integrated in time. The effect of interblade phase angle is included in the aeroelastic analysis by an appropriate choice of initial and boundary conditions. Flutter predictions are obtained from the time response of a flat plate cascade in single degree of freedom pitching motion. The results correlate well with those obtained from a separate frequency domain flutter analysis for all values of interblade phase angles considered. Flutter results are then presented for cascades having airfoil sections representative of a supersonic throughflow fan. The validity of the time integration method for a cascade of airfoils at various interblade phase angles is demonstrated
Simulations of Baryon Oscillations
The coupling of photons and baryons by Thomson scattering in the early
universe imprints features in both the Cosmic Microwave Background (CMB) and
matter power spectra. The former have been used to constrain a host of
cosmological parameters, the latter have the potential to strongly constrain
the expansion history of the universe and dark energy. Key to this program is
the means to localize the primordial features in observations of galaxy spectra
which necessarily involve galaxy bias, non-linear evolution and redshift space
distortions. We present calculations, based on mock catalogs produced from
high-resolution N-body simulations, which show the range of behaviors we might
expect of galaxies in the real universe. We investigate physically motivated
fitting forms which include the effects of non-linearity, galaxy bias and
redshift space distortions and discuss methods for analysis of upcoming data.
In agreement with earlier work, we find that a survey of several Gpc^3 would
constrain the sound horizon at z~1 to about 1%.Comment: 33 pages, to appear in Astroparticle Physics. Discussion of Blake &
Glazebrook procedure changed, minor edits to match version accepted by the
journa
Optimal Controller Identification for multivariable non-minimum phase systems
This paper extends the formulation of a data-driven control method - the
Optimal Controller Identification (OCI) - to cope with non-minimum phase (NMP)
systems, without a priori knowledge of the NMP transmission zero, i.e. without
obtaining a prior model of the plant - as in any data-driven approach. The
method is based on the Model Reference paradigm, in which the desired
closed-loop performance is specified by means of a closed-loop transfer
function - the reference model. Considering a convenient parametrization of the
latter and a flexible performance criterion, it is possible to identify the NMP
transmission zeros of the plant along with the optimal controller parameters,
as it will be shown. Both diagonal and block-triangular reference model
structures are treated in detail. Simulation examples show the effectiveness of
the proposed approach
Methane selective oxidation on metal oxide catalysts at low temperatures with O<sub>2</sub> using an NO/NO<sub>2</sub> oxygen atom shuttle
Methane oxidation using O2 over transition metal oxides often requires severe conditions ( >500 °C) to achieve detectable conversion. In this study, NO was used to transfer oxygen atoms from O2, through the facile gas-phase formation of NO2 at moderate conditions (0.1 MPa and 300–400 °C), to oxidize methane over silica-supported transition metal oxides (VOx, CrOx, MnOx, NbOx, MoOx, and WOx). In situ infrared spectroscopy measurements indicated that the reaction likely proceeded by the formation of surface monodentate nitrate intermediates. These nitrate species were formed by the interaction between adsorbed NO2 and the supported metal oxides. During the reaction, the oxides of vanadium, molybdenum, and tungsten formed formaldehyde and CO2, whereas the oxides of chromium, manganese, and niobium produced only CO2. These results are consistent with the known hydrocarbon oxidation chemistry of the metal oxides. Contact time measurements on VOx/SiO2 indicated that formaldehyde was a primary product and CO2 was the final product; conversely, analogous measurements on MnOx/SiO2 showed that CO2 was the sole product. The formaldehyde production rate on VOx/SiO2, MoOx/SiO2, and WOx/SiO2, based on surface sites measured by high temperature oxygen chemisorption, compared favorably to oxygenate production rates for stronger oxidants (N2O and H2O2) reported in the literature
- …