483 research outputs found

    Evolutionary stasis and lability in thermal physiology in a group of tropical lizards

    Get PDF
    Understanding how quickly physiological traits evolve is a topic of great interest, particularly in the context of how organisms can adapt in response to climate warming. Adjustment to novel thermal habitats may occur either through behavioural adjustments, physiological adaptation, or both. Here we test whether rates of evolution differ among physiological traits in the cybotoids, a clade of tropical Anolis lizards distributed in markedly different thermal environments on the Caribbean island of Hispaniola. We find that cold tolerance evolves considerably faster than heat tolerance, a difference that results because behavioural thermoregulation more effectively shields these organisms from selection on upper than lower temperature tolerances. Specifically, because lizards in very different environments behaviourally thermoregulate during the day to similar body temperatures, divergent selection on body temperature and heat tolerance is precluded, whereas night-time temperatures can only be partially buffered by behaviour, thereby exposing organisms to selection on cold tolerance. We discuss how exposure to selection on physiology influences divergence among tropical organisms and its implications for adaptive evolutionary response to climate warming

    Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans?

    Get PDF
    BACKGROUND: A central premise of physiological ecology is that an animal's preferred body temperature should correspond closely with the temperature maximizing performance and Darwinian fitness. Testing this co-adaptational hypothesis has been problematic for several reasons. First, reproductive fitness is the appropriate measure, but is difficult to measure in most animals. Second, no single fitness measure applies to all demographic situations, complicating interpretations. Here we test the co-adaptation hypothesis by studying an organism (Caenorhabditis elegans) in which both fitness and thermal preference can be reliably measured.RESULTS: We find that natural isolates of C. elegans display a range of mean thermal preferences and also vary in their thermal sensitivities for fitness. Hot-seeking isolates CB4854 and CB4857 prefer temperatures that favor population growth rate (r), whereas the cold-seeking isolate CB4856 prefers temperatures that favor Lifetime Reproductive Success (LRS).CONCLUSIONS: Correlations between fitness and thermal preference in natural isolates of C. elegans are driven primarily by isolate-specific differences in thermal preference. If these differences are the result of natural selection, then this suggests that the appropriate measure of fitness for use in evolutionary ecology studies might differ even within species, depending on the unique ecological and evolutionary history of each population.</p

    Swimming with Predators and Pesticides: How Environmental Stressors Affect the Thermal Physiology of Tadpoles

    Get PDF
    To forecast biological responses to changing environments, we need to understand how a species’s physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered that predator cues induced a 0.4uC higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5uC, while exposure to the herbicide marginally lowered Topt by 0.4uC. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5uC higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming.Peer reviewe

    Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments

    Get PDF
    Abstract A range of species exploit anthropogenic food resources in behaviour known as ‘raiding’. Such behavioural flexibility is considered a central component of a species’ ability to cope with human-induced environmental changes. Here, we study the behavioural processes by which raiding male chacma baboons (Papio ursinus) exploit the opportunities and mitigate the risks presented by raiding in the suburbs of Cape Town, South Africa. Ecological sampling and interviews conducted with ‘rangers’ (employed to manage the baboons’ space use) revealed that baboons are at risk of being herded out of urban spaces that contain high-energy anthropogenic food sources. Baboon-attached motion/GPS tracking collars showed that raiding male baboons spent almost all of their time at the urban edge, engaging in short, high-activity forays into the urban space. Moreover, activity levels were increased where the likelihood of deterrence by rangers was greater. Overall, these raiding baboons display a time-activity balance that is drastically altered in comparison to individuals living in more remote regions. We suggest our methods can be used to obtain precise estimates of management impact for this and other species in conflict with people

    Patterns of nucleotide diversity at the regions encompassing the Drosophila insulin-like peptide (dilp) genes: demography vs positive selection in Drosophila melanogaster.

    Get PDF
    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events

    Efficacy of a Topical Formulation Containing Emodepside and Praziquantel (Profender®, Bayer) against Nematodes in Captive Tortoises

    Get PDF
    Gastrointestinal parasites are commonly diagnosed in captive tortoises. In response, fenbendazole has traditionally been used as an anthelmintic, either in single or repeated doses. However, fenbendazole requires oral administration and the process can be very challenging in some individuals. A topical preparation containing emodepside and praziquantel (Profender®, Bayer, Leverkusen, Germany) is promoted as effective against a broad range of nematodes, trematodes, and cestodes. Although this product is currently only licensed for administration to cats, previous studies have shown positive results with tortoises. The aim of this study was to determine the efficacy of Profender against oxyurid and ascarid parasites in captive tortoises. This was achieved by quantifying nematode eggs per gram (EPG) in feces using a modified McMaster technique before (Day 0) and after (Days 14 and 33) topical application of Profender at a dose rate of 21.5 mg emodepside and 85.5 mg praziquantel per kilogram. Twenty-nine tortoises, representing four different species, were enrolled in this study of which 14 (48%; including Testudo hermanni and Testudo graeca) were positive for intestinal nematodes. Following treatment, the oxyurid EPG was slightly increased on Day 14 but declined significantly by Day 33 (59.7% reduction; P = 0.01), indicating a slow onset of effect and moderate efficacy 33 days posttreatment; however, no conclusions regarding efficacy against ascarids can be drawn from this study. Topical application of emodepside and praziquantel was well tolerated in our tortoise population and, therefore, could be considered as a useful alternative anthelmintic treatment protocol for captive tortoises

    Modelling mammalian energetics: the heterothermy problem

    Get PDF
    Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential responses of mammals to changing climates. Many models that seek to explain the effects of environmental temperatures on mammalian energetics and survival assume a constant body temperature. However, despite generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and happen in response to immediate changes in resource abundance or temperature. In this review we provide an overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models
    corecore