1,127 research outputs found
Simulation of changes in some soil properties as affected by water level fluctuation in an inland salt marsh
AbstractAn 87-day simulation experiment was conducted to test the effects of water level fluctuation on soil properties of an inland salt marsh. The simulated wetland was periodically flooded for 15 days with consistent water levels of 10cm above the wetland surface soil and then drained to 0cm for 9 days. Soil samples were collected from the 0 to 30cm depth with 10cm intervals at days of 0, 39 and 72 after a 15-day pre-incubation. Total nitrogen (TN), total phosphorus (TP), soil organic matter (SOM) and pH were determined during the experimental period. Results showed that TN content was much higher in surface soils than other soil layers during the whole incubation period, especially at the second inundation period (54 days), and TN greatly increased in the soil layers above 20cm with increasing incubation time. However, the SOM content in each soil layer showed a consistent tendency of “decreasing followed increasing” with increasing incubation time. Compared to other soil layers, SOM content in surface soils were generally higher during the simulation periods. TP content in upper soils (0-20cm) consistently increased over the course of incubation time, while those in deeper soils (20-30cm) decreased. Soil pH values showed similar changing tendencies to SOM content over the incubation experiment, while they generally increased with depth
Time varying in N=8 extended Supergravity
There has been some evidence that the fine structure "constant" may
vary with time. We point out that this variation can be described by a scalar
field in some supergravity theory in our toy model, for instance, the N=8
extended supergravity in four dimensions which can be accommodated in M-theory.Comment: 5 pages,1 figures. Accepted for publication in JHE
Phase Separation in LiFePO Induced by Correlation Effects
We report on a significant failure of LDA and GGA to reproduce the phase
stability and thermodynamics of mixed-valence LiFePO compounds.
Experimentally, LiFePO compositions () are known to be
unstable and phase separate into Li FePO and FePO. However,
first-principles calculations with LDA/GGA yield energetically favorable
intermediate compounds an d hence no phase separation. This qualitative failure
of LDA/GGA seems to have its origin in the LDA/GGA self-interaction which de
localizes charge over the mixed-valence Fe ions, and is corrected by explicitly
considering correlation effects in this material. This is demonstrated with
LDA+U calculations which correctly predict phase separation in LiFePO
for eV. T he origin of the destabilization of intermediate
compounds is identified as electron localization and charge ordering at
different iron sites. Introduction of correlation also yields more accurate
electrochemical reaction energies between FePO/LiFePO and
Li/Li electrodes.Comment: 12 pages, 5 figures, Phys. Rev. B 201101R, 200
Photonic quantum data locking
Quantum data locking is a quantum phenomenon that allows us to encrypt a long message with a small secret key with information-theoretic security. This is in sharp contrast with classical information theory where, according to Shannon, the secret key needs to be at least as long as the message. Here we explore photonic architectures for quantum data locking, where information is encoded in multi-photon states and processed using multi-mode linear optics and photo-detection, with the goal of extending an initial secret key into a longer one. The secret key consumption depends on the number of modes and photons employed. In the no-collision limit, where the likelihood of photon bunching is suppressed, the key consumption is shown to be logarithmic in the dimensions of the system. Our protocol can be viewed as an application of the physics of Boson Sampling to quantum cryptography. Experimental realisations are challenging but feasible with state-of-the-art technology, as techniques recently used to demonstrate Boson Sampling can be adapted to our scheme (e.g., Phys. Rev. Lett. 123, 250503, 2019)
Could thermal fluctuations seed cosmic structure?
We examine the possibility that thermal, rather than quantum, fluctuations
are responsible for seeding the structure of our universe. We find that while
the thermalization condition leads to nearly Gaussian statistics, a
Harrisson-Zeldovich spectrum for the primordial fluctuations can only be
achieved in very special circumstances. These depend on whether the universe
gets hotter or colder in time, while the modes are leaving the horizon. In the
latter case we find a no-go theorem which can only be avoided if the
fundamental degrees of freedom are not particle-like, such as in string gases
near the Hagedorn phase transition. The former case is less forbidding, and we
suggest two potentially successful ``warming universe'' scenarios. One makes
use of the Phoenix universe, the other of ``phantom'' matter.Comment: minor corrections made, references added, matches the version
accepted to PR
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
- …