2,185 research outputs found
The Non-Trivial Effective Potential of the `Trivial' lambda Phi^4 Theory: A Lattice Test
The strong evidence for the `triviality' of (lambda Phi^4)_4 theory is not
incompatible with spontaneous symmetry breaking. Indeed, for a `trivial' theory
the effective potential should be given exactly by the classical potential plus
the free-field zero-point energy of the shifted field; i.e., by the one-loop
effective potential. When this is renormalized in a simple, but nonperturbative
way, one finds, self-consistently, that the shifted field does become
non-interacting in the continuum limit. For a classically scale-invariant (CSI)
lambda Phi^4 theory one finds m_h^2 = 8 pi^2 v^2, predicting a 2.2 TeV Higgs
boson. Here we extend our earlier work in three ways: (i) we discuss the
analogy with the hard-sphere Bose gas; (ii) we extend the analysis from the CSI
case to the general case; and (iii) we propose a test of the predicted shape of
the effective potential that could be tested in a lattice simulation.Comment: 22 pages, LaTeX, DE-FG05-92ER40717-
A clock synchronization skeleton based on RTAI
This paper presents a clock synchronization skeleton based on RTAI (Real Time Application Interface). The skeleton is a thin layer that provides unified but extendible interfaces to the underlying operating system, the synchronization algorithms and the upper level applications in need of clock synchronization. The skeleton provides synchronization support to a system, whereby the achieved accuracy is the best obtainable given this software structure. By connecting an algorithm and a communication module with the skeleton, a system becomes capable to run with synchronization support. To demonstrate and validate the design, the skeleton has been tested successfully with two different synchronization algorithms based on the CAN bus. Other algorithms and communication technologies can also work with the skeleton, as long as they provide the necessary functionalities for clock synchronization
Nonlinear alternating current responses of graded materials
When a composite of nonlinear particles suspended in a host medium is
subjected to a sinusoidal electric field, the electrical response in the
composite will generally consist of alternating current (AC) fields at
frequencies of higher-order harmonics. The situation becomes more interesting
when the suspended particles are graded, with a spatial variation in the
dielectric properties. The local electric field inside the graded particles can
be calculated by the differential effective dipole approximation, which agrees
very well with a first-principles approach. In this work, a nonlinear
differential effective dipole approximation and a perturbation expansion method
have been employed to investigate the effect of gradation on the nonlinear AC
responses of these composites. The results showed that the fundamental and
third-harmonic AC responses are sensitive to the dielectric-constant and/or
nonlinear-susceptibility gradation profiles within the particles. Thus, by
measuring the AC responses of the graded composites, it is possible to perform
a real-time monitoring of the fabrication process of the gradation profiles
within the graded particles.Comment: 18 pages, 4 figure
Quantifying the scales of spatial variation in gravel beds using terrestrial and airborne laser scanning data
Previous studies measured gravel bed surfaces by terrestrial laser scanning (TLS) and close-range photogrammetry suggested the presence of at least two different scales of spatial variation in gravel bed surfaces. This study investigated the spatial variation of airborne laser scanning (ALS) point clouds acquired in gravel bed. Due to the large footprint of ALS systems, a smoother surface is expected, but there exists some uncertainty over the precise scale of ALS measurement (hereafter referred to as the spatial support). As a result, we applied the regularization method, which is a variogram upscaling approach, to investigate the true support of ALS data. The regularization results suggested that the gravel bed surface described by the ALS is much smoother than expected in terms of the ALS reported measurement scale. Moreover, we applied the factorial kriging (FK) method, which allows mapping of different scales of variation present in the data separately (different from ordinary kriging which produces a single map), to obtain the river bed topography at each scale of spatial variation. We found that the short-range and long-range FK maps of the TLS-derived DSMs were able to highlight the edges of gravels and clusters of gravels, respectively. The long-range FK maps of the ALS data shows a pattern of gravel-bed clusters and aggregations of gravels. However, the short-range FK maps of the ALS data produced noisy maps, due to the smoothing effect. This analysis, thus, shows clearly that ALS data may be insufficient for geomorphological and hydraulic engineering applications that require the resolution of individual gravels. © 2018 G.-H. Huang et al. published by De Gruyte
Giant Magnons under NS-NS and Melvin Fields
The giant magnon is a rotating spiky string configuration which has the same
dispersion relation between the energy and angular momentum as that of a spin
magnon. In this paper we investigate the effects of the NS-NS and Melvin fields
on the giant magnon. We first analyze the energy and angular momenta of the
two-spin spiky D-string moving on the with the NS-NS field.
Due to the infinite boundary of the AdS spacetime the D-string solution will
extend to infinity and it appears the divergences. After adding the counter
terms we obtain the dispersion relation of the corresponding giant magnon. The
result shows that there will appear a prefactor before the angular momentum, in
addition to some corrections in the sine function. We also see that the spiky
profile of a rotating D-string plays an important role in mapping it to a spin
magnon. We next investigate the energy and angular momentum of the one-spin
spiky fundamental string moving on the with the electric or
magnetic Melvin field. The dispersion relation of the corresponding deformed
giant magnon is also obtained. We discuss some properties of the correction
terms and their relations to the spin chain with deformations.Comment: Latex 20 pages, mention D-string and add reference
Tunneling and propagation of vacuum bubbles on dynamical backgrounds
In the context of bubble universes produced by a first-order phase transition
with large nucleation rates compared to the inverse dynamical time scale of the
parent bubble, we extend the usual analysis to non-vacuum backgrounds. In
particular, we provide semi-analytic and numerical results for the modified
nucleation rate in FLRW backgrounds, as well as a parameter study of bubble
walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the
thin-wall approximation. We show that in our model, matter in the background
often prevents bubbles from successful expansion and forces them to collapse.
For cases where they do expand, we give arguments why the effects on the
interior spacetime are small for a wide range of reasonable parameters and
discuss the limitations of the employed approximations.Comment: 29 pages, 8 figures, typos corrected, matches published versio
Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition
Environmental Biolog
Bulk Viscous LRS Biachi-I Universe with variable and decaying
The present study deals with spatially homogeneous and totally anisotropic
locally rotationally symmetric (LRS) Bianchi type I cosmological model with
variable and in presence of imperfect fluid. To get the
deterministic model of Universe, we assume that the expansion in the
model is proportional to shear . This condition leads to , where ,\; are metric potential. The cosmological constant
is found to be decreasing function of time and it approaches a small
positive value at late time which is supported by recent Supernovae Ia (SN Ia)
observations. Also it is evident that the distance modulus curve of derived
model matches with observations perfectly.Comment: 11 pages, 4 figures and 1 table, Accepted for publication in
Astrophysics and Space Scienc
An efficient and generalisable approach for mapping paddy rice fields based on their unique spectra during the transplanting period leveraging the CIE colour space
As one of the most important staple foods globally, rice sustains nearly half of the world's population. Accurate and timely paddy rice mapping is, thus, essential for rice-related policy-making to ensure food security in the context of anthropogenic, environmental and climate changes. However, paddy rice mapping remains a challenging task since it usually has similar spectral characteristics to other land covers. In this research, for the first time, an entirely new approach, called RiceTColour, was proposed for mapping rice fields within the Commission Internationale de l'Eclairage (CIE) colour space based on their unique spectra during the rice transplanting period as observed in remotely sensed imagery. We demonstrate that transplanted rice fields, representing a mixture of soil, water and rice seedlings, consistently exhibit relatively low spectral values in both SWIR and NIR bands across various geographical locations, leading to their unique dark green colours in the false-colour image composed of SWIR, NIR and Red bands. Based upon this, we transformed these three spectral bands into the CIE colour space where paddy rice was found to be readily and completely separated from the other land covers. Straightforward, but specific classification criteria were established within the CIE colour space to differentiate paddy rice from the other land covers. The proposed RiceTColour, thus, represents a new approach for paddy rice identification, that is mapping paddy rice using the CIE colour space based upon the previous underexplored remotely sensed spectra of paddy fields during the transplanting season. The effectiveness of the proposed method was investigated over five rice-planting regions distributed across different geographical regions, characterised by different climates, rice cropping intensities, irrigation schemes and cultural practices. Specifically, the mapping criteria established in a training site (S1) were directly generalised to the other four sites (S2 to S5) for paddy rice mapping. Experimental results demonstrated that the RiceTColour method consistently achieved the most accurate and balanced classifications across all five sites compared with four benchmark comparators: a SAR-based method, an index-based method and two supervised classifier-based methods. In particular, the RiceTColour method performed relatively stable, producing an overall accuracy exceeding 95% in the training site (S1) as well as the four generalised sites (S2 to S5), which is an encouraging result. Such efficient yet stable rice mapping results across various rice-planting regions suggest a very strong generalisation capability of the proposed RiceTColour method. In consideration of the relatively large planting area of paddy rice fields globally, the proposed parameter-free, efficient, and generalisable RiceTColour method, thus, holds great potential for widespread application in various rice-planting areas worldwide
- …