12 research outputs found

    Structured Illumination Microscopy Reveals Focal Adhesions are Composed of Linear Subunits

    Get PDF
    The ability to mechanically interact with the extracellular matrix is a fundamental feature of adherent eukaryotic cells. Cell-matrix adhesion in many cell types is mediated by protein complexes called focal adhesions (FAs). Recent progress in super resolution microscopy revealed FAs possess an internal organization, yet such methods do not enable observation of the formation and dynamics of their internal structure in living cells. Here, we combine structured illumination microscopy (SIM) with total internal reflection fluorescence microscopy (TIRF) to show that the proteins inside FA patches are distributed along elongated subunits, typically 300 6 100 nm wide, separated by 400 6 100 nm, and individually connected to actin cables. We further show that the formation and dynamics of these linear subunits are intimately linked to radial actin fiber formation and actomyosin contractility. We found FA growth to be the result of nucleation of new linear subunits and their coordinated elongation. Taken together, this study reveals that the basic units of mature focal adhesion are 300-nm-wide elongated, dynamic structures. We anticipate this ultrastructure to be relevant to investigation of the function of FAs and their behavior in response to mechanical stress. V C 2015 Wiley Periodicals, Inc

    Mécanique et Dynamique de l'Adhésion Cellulaire : Etude Expérimentale des Ostéoclastes

    No full text
    Osteoclasts are large, multinucleated cells, which resorb mineralized bone. When an osteoclast encounters a substrate, dot-like actin-rich structures, the podosomes, appear and assemble into clusters, rings or a belt. We experimentally investigate, from a cell population to a single podosome, their function and dynamics. Over a cell population, kinetic measurements show that the cell surface area A scales as A ~ K2, where K is the number of nuclei, indicating a flat morphology. By defining quantities that account for the spatial distribution of the actin within the cell, we demonstrate that the podosomes organization only depends on the time after differentiation, and not on K. In a single osteoclast, the observation of a strong coupling between cell spreading and podosomes formation lead us to propose that podosomes play an important role in osteoclast motility. Analysis of osteoclast migration, and the forces it applies on the substrate, demonstrates that the internal dynamics of the actin within the cell does not only correlate with cell migration, but drives it. Finally, in order to understand the internal dynamics of a single podosome, we improved the model of Biben et al. (2005) by considering on the one hand, actin polymerization, and on the other hand, diffusion and attachment kinetics of the gelsolin, an actin severing protein. We find that podosomes are mainly governed by the actin dynamics, regardless of gelsolin concentration.Les ostéoclastes sont des cellules multinucléées, responsables de la résorption osseuse. Quand ils sont déposés sur un substrat, des structures ponctuelles riches en actine, les podosomes, apparaissent et s'assemblent en clusters, anneaux ou ceinture. Nous avons étudié expérimentalement leur fonction et leur dynamique, depuis une population entière jusqu'à l'échelle d'un unique podosome. Sur une population de cellules, des mesures cinétiques montrent que la surface de la cellule A varie comme A ~ K2, où K est le nombre de noyaux ; ce résultat indique une forme aplatie. Par ailleurs, la mesure de quantités qui prennent en compte l'organisation spatiale de l'actine dans la cellule montre que l'organisation des podosomes ne dépend que du temps écoulé après différentiation, et non de K. Dans un seul ostéoclaste, l'observation d'un fort couplage entre l'étalement d'une cellule et la formation des podosomes nous a conduit a suggérer que les podosomes jouent un rôle important dans la mobilité des ostéoclastes. L'analyse de la migration d'ostéoclastes, ainsi que des forces appliquées sur le substrat, montre que la dynamique interne de l'actine dans la cellule est non seulement corrélée avec la migration cellulaire, mais la gouverne. Enfin, afin de comprendre la dynamique interne d'un podosome, nous avons amélioré le modèle de Biben et al. (2005), en prenant en compte d'une part, la polymérisation de l'actine, et d'autre part, la diffusion et la cinétique d'attachement de la gelsoline, une protéine responsable de la coupe des filaments d'actine. Nous montrons que les podosomes sont principalement gouvernés par la dynamique de l'actine, indépendamment de la concentration en gelsoline

    Mécanique et dynamique de l'adhésion cellulaire (étude expérimentale des ostéoclastes )

    No full text
    Osteoclasts are large, multinucleated cells, which resorb mineralized bone. When an osteoclast encounters a substrate, dot-like actin-rich structures, the podosomes, appear and assemble into clusters, rings or a belt. We experimentally investigate, from a cell population to a single podosome, their function and dynamics. Over a cell population, kinetic measurements show that the cell surface area A scales as A ~ K2, where K is the number of nuclei, indicating a flat morphology. By defining quantities that account for the spatial distribution of the actin within the cell, we demonstrate that the podosomes organization only depends on the time after differentiation, and not on K. In a single osteoclast, the observation of a strong coupling between cell spreading and podosomes formation lead us to propose that podosomes play an important role in osteoclast motility. Analysis of osteoclast migration, and the forces it applies on the substrate, demonstrates that the internal dynamics of the actin within the cell does not only correlate with cell migration, but drives it. Finally, in order to understand the internal dynamics of a single podosome, we improved the model of Biben et al. (2005) by considering on the one hand, actin polymerization, and on the other hand, diffusion and attachment kinetics of the gelsolin, an actin severing protein. We find that podosomes are mainly governed by the actin dynamics, regardless of gelsolin concentration.Les ostéoclastes sont des cellules multinucléées, responsables de la résorption osseuse. Quand ils sont déposés sur un substrat, des structures ponctuelles riches en actine, les podosomes, apparaissent et s'assemblent en clusters, anneaux ou ceinture. Nous avons étudié expérimentalement leur fonction et leur dynamique, depuis une population entière jusqu'à l'échelle d'un unique podosome. Sur une population de cellules, des mesures cinétiques montrent que la surface de la cellule A varie comme A ~ K2, où K est le nombre de noyaux ; ce résultat indique une forme aplatie. Par ailleurs, la mesure de quantités qui prennent en compte l'organisation spatiale de l'actine dans la cellule montre que l'organisation des podosomes ne dépend que du temps écoulé après différentiation, et non de K. Dans un seul ostéoclaste, l'observation d'un fort couplage entre l'étalement d'une cellule et la formation des podosomes nous a conduit a suggérer que les podosomes jouent un rôle important dans la mobilité des ostéoclastes. L'analyse de la migration d'ostéoclastes, ainsi que des forces appliquées sur le substrat, montre que la dynamique interne de l'actine dans la cellule est non seulement corrélée avec la migration cellulaire, mais la gouverne. Enfin, afin de comprendre la dynamique interne d'un podosome, nous avons amélioré le modèle de Biben et al. (2005), en prenant en compte d'une part, la polymérisation de l'actine, et d'autre part, la diffusion et la cinétique d'attachement de la gelsoline, une protéine responsable de la coupe des filaments d'actine. Nous montrons que les podosomes sont principalement gouvernés par la dynamique de l'actine, indépendamment de la concentration en gelsoline.LYON-ENS Sciences (693872304) / SudocSudocFranceF

    Ordering of myosin II filaments driven by mechanical forces: experiments and theory

    No full text
    International audienceMyosin II filaments form ordered superstructures in both cross-striated muscle and non-muscle cells. In cross-striated muscle, myosin II (thick) filaments, actin (thin) filaments and elastic titin filaments comprise the stereotypical contractile units of muscles called sarcomeres. Linear chains of sarcomeres, called myofibrils, are aligned laterally in registry to form cross-striated muscle cells. The experimentally observed dependence of the registered organization of myofibrils on extracellular matrix elasticity has been proposed to arise from the interactions of sarcomeric contractile elements (considered as force dipoles) through the matrix. Non-muscle cells form small bipolar filaments built of less than 30 myosin II molecules. These filaments are associated in registry forming superstructures ('stacks') orthogonal to actin filament bundles. Formation of myosin II filament stacks requires the myosin II ATPase activity and function of the actin filament crosslinking, polymerizing and depolymerizing proteins. We propose that the myosin II filaments embedded into elastic, intervening actin network (IVN) function as force dipoles that interact attractively through the IVN. This is in analogy with the theoretical picture developed for myofibrils where the elastic medium is now the actin cytoskeleton itself. Myosin stack formation in non-muscle cells provides a novel mechanism for the self-organization of the actin cytoskeleton at the level of the entire cell.This article is part of the theme issue 'Self-organization in cell biology'

    Population pharmacokinetics of voriconazole and the role of CYP2C19 genotype on treatment optimization in pediatric patients.

    No full text
    The aim of this study was to evaluate factors that impact on voriconazole (VRC) population pharmacokinetic (PPK) parameters and explore the optimal dosing regimen for different CYP2C19 genotypes in Chinese paediatric patients. PPK analysis was used to identify the factors contributing to the variability in VRC plasma trough concentrations. A total of 210 VRC trough concentrations from 91 paediatric patients were included in the study. The median VRC trough concentration was 1.23 mg/L (range, 0.02 to 8.58 mg/L). At the measurement of all the trough concentrations, the target range (1.0~5.5 mg/L) was achieved in 52.9% of the patients, while subtherapeutic and supratherapeutic concentrations were obtained in 40.9% and 6.2% of patients, respectively. VRC trough concentrations were adjusted for dose (Ctrough/D), with normal metabolizers (NMs) and intermediate metabolizers (IMs) having significantly lower levels than poor metabolizers (PMs) (PN-P < 0.001, PI-P = 0.039). A one-compartment model with first-order absorption and elimination was suitable to describe the VRC pharmacokinetic characteristics. The final model of VRC PPK analysis contained CYP2C19 phenotype as a significant covariate for clearance. Dose simulations suggested that a maintenance dose of 9 mg/kg orally or 8 mg/kg intravenously twice daily was appropriate for NMs to achieve the target concentration. A maintenance dose of 9 mg/kg orally or 5 mg/kg intravenously twice daily was appropriate for IMs. Meanwhile, PMs could use lower maintenance dose and an oral dose of 6 mg/kg twice daily or an intravenous dose of 5mg/kg twice daily was appropriate. To increase the probability of achieving the therapeutic range and improving efficacy, CYP2C19 phenotype can be used to predict VRC trough concentrations and guide dose adjustments in Chinese pediatric patients

    Structural and Biochemical Characterization of a Cyanobacterial PP2C Phosphatase Reveals Insights into Catalytic Mechanism and Substrate Recognition

    No full text
    PP2C-type phosphatases play roles in signal transduction pathways related to abiotic stress. The cyanobacterial PP2C-type phosphatase tPphA specifically dephosphorylates the PII protein, which is a key regulator in cyanobacteria adapting to nitrogen-deficient environments. Previous studies have shown that residue His39 of tPphA is critical for the enzyme’s recognition of the PII protein; however, the manner in which this residue determines tPphA substrate specificity is unknown. Here, we solved the crystal structure of H39A, a tPphA variant. The structure revealed that the mutation of residue His39 to alanine changes the conformation and the flexibility of the loop in which residue His39 is located, and these changes affect the substrate specificity of tPphA. Moreover, previous studies have assumed that the FLAP subdomain and the third metal (M3) of tPphA could mutually influence each other to regulate PP2C catalytic activity and substrate specificity. However, despite the variable conformations adopted by the FLAP subdomain, the position of M3 was consistent in the tPphA structure. These results indicate that the FLAP subdomain does not influence M3 and vice versa. In addition, a small screen of tPphA inhibitors was performed. Sanguinarine and Ni2+ were found to be the most effective inhibitors among the assayed chemicals. Finally, the dimeric form of tPphA was stabilized by cross-linkers and still exhibited catalytic activity towards p-nitrophenyl phosphate

    Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding.

    No full text
    International audienceRegulation of the cellular volume is fundamental for cell survival and function. Deviations from equilibrium trigger dedicated signaling and transcriptional responses that mediate water homeostasis and volume recovery. Cells are densely packed with proteins, and molecular crowding may play an important role in cellular processes. Indeed, increasing molecular crowding has been shown to modify the kinetics of biochemical reactions in vitro; however, the effects of molecular crowding in living cells are mostly unexplored. Here, we report that, in yeast, a sudden reduction in cellular volume, induced by severe osmotic stress, slows down the dynamics of several signaling cascades, including the stress-response pathways required for osmotic adaptation. We show that increasing osmotic compression decreases protein mobility and can eventually lead to a dramatic stalling of several unrelated signaling and cellular processes. The rate of these cellular processes decreased exponentially with protein density when approaching stalling osmotic compression. This suggests that, under compression, the cytoplasm behaves as a soft colloid undergoing a glass transition. Our results shed light on the physical mechanisms that force cells to cope with volume fluctuations to maintain an optimal protein density compatible with cellular functions
    corecore