1,378 research outputs found
An electromagnetism-like metaheuristic for open-shop problems with no buffer
This paper considers open-shop scheduling with no intermediate buffer to minimize total tardiness. This problem occurs in many production settings, in the plastic molding, chemical, and food processing industries. The paper mathematically formulates the problem by a mixed integer linear program. The problem can be optimally solved by the model. The paper also develops a novel metaheuristic based on an electromagnetism algorithm to solve the large-sized problems. The paper conducts two computational experiments. The first includes small-sized instances by which the mathematical model and general performance of the proposed metaheuristic are evaluated. The second evaluates the metaheuristic for its performance to solve some large-sized instances. The results show that the model and algorithm are effective to deal with the problem
Kondo physics in carbon nanotubes
The connection of electrical leads to wire-like molecules is a logical step
in the development of molecular electronics, but also allows studies of
fundamental physics. For example, metallic carbon nanotubes are quantum wires
that have been found to act as one-dimensional quantum dots, Luttinger-liquids,
proximity-induced superconductors and ballistic and diffusive one-dimensional
metals. Here we report that electrically-contacted single-wall nanotubes can
serve as powerful probes of Kondo physics, demonstrating the universality of
the Kondo effect. Arising in the prototypical case from the interaction between
a localized impurity magnetic moment and delocalized electrons in a metallic
host, the Kondo effect has been used to explain enhanced low-temperature
scattering from magnetic impurities in metals, and also occurs in transport
through semiconductor quantum dots. The far higher tunability of dots (in our
case, nanotubes) compared with atomic impurities renders new classes of
Kondo-like effects accessible. Our nanotube devices differ from previous
systems in which Kondo effects have been observed, in that they are
one-dimensional quantum dots with three-dimensional metal (gold) reservoirs.
This allows us to observe Kondo resonances for very large electron number (N)
in the dot, and approaching the unitary limit (where the transmission reaches
its maximum possible value). Moreover, we detect a previously unobserved Kondo
effect, occurring for even values of N in a magnetic field.Comment: 7 pages, pdf onl
Recommended from our members
Effects of seismic devices on transverse responses of piers in the Sutong Bridge
The Sutong Bridge in China opened to traffic in 2008, and is an arterial connection between the cities of Nantong and Suzhou. It is a cable-stayed bridge with a main span of 1,088 m. Due to a tight construction schedule and lack of suitable seismic devices at the time, fixed supports were installed between the piers and the girder in the transverse direction. As a result, significant transverse seismic forces could occur in the piers and foundations, especially during a return period of a 2500-year earthquake. Therefore, the piers, foundations and fixed bearings had to be designed extraordinarily strong. However, when larger earthquakes occur, the bearings, piers and foundations are still vulnerable. The recent rapid developments in seismic technology and the performance-based design approach offer a better opportunity to optimize the transverse seismic design for the Sutong Bridge piers. The optimized design can be applied to the Sutong Bridge (as a retrofit), as well as other bridges. Seismic design alternatives utilizing viscous fluid dampers (VFD), or friction pendulum sliding bearings (FPSB), or transverse yielding metallic dampers (TYMD) are thoroughly studied in this work, and the results are compared with those from the current condition with fixed transverse supports and a hypothetical condition in which only sliding bearings are provided on top of the piers (the girder can move “freely” in the transverse direction during the earthquake, except for frictional forces of the sliding bearings). Parametric analyses were performed to optimize the design of these proposed seismic devices. From the comparison of the peak bridge responses in these configurations, it was found that both VFD and TYMD are very effective in the reduction of transverse seismic forces in piers, while at the same time keeping the relative transverse displacements between piers and the box girder within acceptable limits. However, compared to VFD, TYMD do not interact with the longitudinal displacements of the girder, and have simpler details and lower initial and maintenance costs. Although the use of FPSB can also reduce seismic forces, it generally causes the transverse relative displacements to be higher than acceptable limits
Tim-3 Negatively Regulates IL-12 Expression by Monocytes in HCV Infection
T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection
Towards a target label-free suboptimum oligonucleotide displacement-based detection system
A novel method for the future development of label-free DNA sensors is proposed here. The approach is based on the displacement of a labelled suboptimum mutated oligonucleotide hybridised with the immobilised biotin-capture probe. The target fully complementary to the biotin-capture probe can displace the labelled oligonucleotide causing a subsequent decrease of the signal that verifies the presence of the target. The decrease of signal was demonstrated to be proportional to the target concentration. A study of the hybridisation of mutated and complementary labelled oligonucleotides with an immobilised biotin-capture probe was carried out. Different kinetic and thermodynamic behaviour was observed for heterogeneous hybridisation of biotin-capture probe with complementary or suboptimum oligonucleotides. The displacement method evaluated colourimetrically achieved the objective of decreasing the response time from 1 h for direct hybridisation of 19-mer oligonucleotides in the direct enzyme-linked oligonucleotide assay (ELONA) to 5 min in the case of displacement detection in the micromolar concentration range
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
On the Bounds of Function Approximations
Within machine learning, the subfield of Neural Architecture Search (NAS) has
recently garnered research attention due to its ability to improve upon
human-designed models. However, the computational requirements for finding an
exact solution to this problem are often intractable, and the design of the
search space still requires manual intervention. In this paper we attempt to
establish a formalized framework from which we can better understand the
computational bounds of NAS in relation to its search space. For this, we first
reformulate the function approximation problem in terms of sequences of
functions, and we call it the Function Approximation (FA) problem; then we show
that it is computationally infeasible to devise a procedure that solves FA for
all functions to zero error, regardless of the search space. We show also that
such error will be minimal if a specific class of functions is present in the
search space. Subsequently, we show that machine learning as a mathematical
problem is a solution strategy for FA, albeit not an effective one, and further
describe a stronger version of this approach: the Approximate Architectural
Search Problem (a-ASP), which is the mathematical equivalent of NAS. We
leverage the framework from this paper and results from the literature to
describe the conditions under which a-ASP can potentially solve FA as well as
an exhaustive search, but in polynomial time.Comment: Accepted as a full paper at ICANN 2019. The final, authenticated
publication will be available at https://doi.org/10.1007/978-3-030-30487-4_3
- …