510 research outputs found
Polypyrrole RVC biofuel cells for powering medical implants
© 2017 IEEE. Batteries for implanted medical devices such as pacemakers typically require surgical replacement every 5 to 10 years causing stress to the patient and their families. A Biofuel cell uses two electrodes with enzymes embedded to convert sugar into electricity. To evaluate the power producing capabilities of biofuel cells to replace battery technology, polypyrrole electrodes were fabricated by compression with Glucose oxidase and Laccase. Vitreous carbon was added to increase the conductivity, whilst glutaraldehyde acted as a crosslinking molecule. A maximum open circuit potential of 558.7 mV, short circuit current of 1.09 mA and maximum power of 0.127 mW was obtained from the fuel cells. This was able to turn on a medical thermometer through a TI BQ25504 energy harvesting circuit, hence showing the powering potential for biomedical devices
BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature
BACKGROUND: To automatically process large quantities of biological literature for knowledge discovery and information curation, text mining tools are becoming essential. Abbreviation recognition is related to NER and can be considered as a pair recognition task of a terminology and its corresponding abbreviation from free text. The successful identification of abbreviation and its corresponding definition is not only a prerequisite to index terms of text databases to produce articles of related interests, but also a building block to improve existing gene mention tagging and gene normalization tools. RESULTS: Our approach to abbreviation recognition (AR) is based on machine-learning, which exploits a novel set of rich features to learn rules from training data. Tested on the AB3P corpus, our system demonstrated a F-score of 89.90% with 95.86% precision at 84.64% recall, higher than the result achieved by the existing best AR performance system. We also annotated a new corpus of 1200 PubMed abstracts which was derived from BioCreative II gene normalization corpus. On our annotated corpus, our system achieved a F-score of 86.20% with 93.52% precision at 79.95% recall, which also outperforms all tested systems. CONCLUSION: By applying our system to extract all short form-long form pairs from all available PubMed abstracts, we have constructed BIOADI. Mining BIOADI reveals many interesting trends of bio-medical research. Besides, we also provide an off-line AR software in the download section on http://bioagent.iis.sinica.edu.tw/BIOADI/
Notch signaling during human T cell development
Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse
Gadolinium oxide nanocrystal nonvolatile memory with HfO2/Al2O3 nanostructure tunneling layers
In this study, Gd2O3 nanocrystal (Gd2O3-NC) memories with nanostructure tunneling layers are fabricated to examine their performance. A higher programming speed for Gd2O3-NC memories with nanostructure tunneling layers is obtained when compared with that of memories using a single tunneling layer. A longer data retention (< 15% charge loss after 104 s) is also observed. This is due to the increased physical thickness of the nanostructure tunneling layer. The activation energy of charge loss at different temperatures is estimated. The higher activation energy value (0.13 to 0.17 eV) observed at the initial charge loss stage is attributed to the thermionic emission mechanism, while the lower one (0.07 to 0.08 eV) observed at the later charge loss stage is attributed to the direct tunneling mechanism. Gd2O3-NC memories with nanostructure tunneling layers can be operated without degradation over several operation cycles. Such NC structures could potentially be used in future nonvolatile memory applications
Incompatibilities Involving Yeast Mismatch Repair Genes: A Role for Genetic Modifiers and Implications for Disease Penetrance and Variation in Genomic Mutation Rates
Genetic background effects underlie the penetrance of most genetically determined phenotypes, including human diseases. To explore how such effects can modify a mutant phenotype in a genetically tractable system, we examined an incompatibility involving the MLH1 and PMS1 mismatch repair genes using a large population sample of geographically and ecologically diverse Saccharomyces cerevisiae strains. The mismatch repair incompatibility segregates into naturally occurring yeast strains, with no strain bearing the deleterious combination. In assays measuring the mutator phenotype conferred by different combinations of MLH1 and PMS1 from these strains, we observed a mutator phenotype only in combinations predicted to be incompatible. Surprisingly, intragenic modifiers could be mapped that specifically altered the strength of the incompatibility over a 20-fold range. Together, these observations provide a powerful model in which to understand the basis of disease penetrance and how such genetic variation, created through mating, could result in new mutations that could be the raw material of adaptive evolution in yeast populations
CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development
Charged multivesicular body protein 1A (CHMP1A; also known as chromatin-modifying protein 1A) is a member of the ESCRT-III (endosomal sorting complex required for transport-III) complex but is also suggested to localize to the nuclear matrix and regulate chromatin structure. Here, we show that loss-of-function mutations in human CHMP1A cause reduced cerebellar size (pontocerebellar hypoplasia) and reduced cerebral cortical size (microcephaly). CHMP1A-mutant cells show impaired proliferation, with increased expression of INK4A, a negative regulator of stem cell proliferation. Chromatin immunoprecipitation suggests loss of the normal INK4A repression by BMI in these cells. Morpholino-based knockdown of zebrafish chmp1a resulted in brain defects resembling those seen after bmi1a and bmi1b knockdown, which were partially rescued by INK4A ortholog knockdown, further supporting links between CHMP1A and BMI1-mediated regulation of INK4A. Our results suggest that CHMP1A serves as a critical link between cytoplasmic signals and BMI1-mediated chromatin modifications that regulate proliferation of central nervous system progenitor cells
Recommended from our members
Respective impacts of Arctic sea ice decline and increasing greenhouse gases concentration on Sahel precipitation
The impact of climate change on Sahel precipitation is uncertain and has to be widely documented. Recently, it has been shown that Arctic sea ice loss leverages the global warming effects worldwide, suggesting a potential impact of Arctic sea ice decline on tropical regions. However, defining the specific roles of increasing greenhouse gases (GHG) concentration and declining Arctic sea ice extent on Sahel climate is not straightforward since the former impacts the latter. We avoid this dependency by analysing idealized experiments performed with the CNRM-CM5 coupled model. Results show that the increase in GHG concentration explains most of the Sahel precipitation change. We found that the impact due to Arctic sea ice loss depends on the level of atmospheric GHG concentration. When the GHG concentration is relatively low (values representative of 1980s), then the impact is moderate over the Sahel. However, when the concentration in GHG is levelled up, then Arctic sea ice loss leads to increased Sahel precipitation. In this particular case the ocean-land meridional gradient of temperature strengthens, allowing a more intense monsoon circulation. We linked the non-linearity of Arctic sea ice decline impact with differences in temperature and sea level pressure changes over the North Atlantic Ocean. We argue that the impact of the Arctic sea ice loss will become more relevant with time, in the context of climate change
Differences in iNOS and Arginase Expression and Activity in the Macrophages of Rats Are Responsible for the Resistance against T. gondii Infection
Toxoplasma gondii infects humans and warm blooded animals causing devastating disease worldwide. It has long been a mystery as to why the peritoneal macrophages of rats are naturally resistant to T. gondii infection while those of mice are not. Here, we report that high expression levels and activity of inducible nitric oxide synthase (iNOS) and low levels of arginase-1 (Arg 1) activity in the peritoneal macrophages of rats are responsible for their resistance against T. gondii infection, due to high nitric oxide and low polyamines within these cells. The opposite situation was observed in the peritoneal macrophages of mice. This discovery of the opposing functions of iNOS and Arg 1 in rodent peritoneal macrophages may lead to a better understanding of the resistance mechanisms of mammals, particularly humans and livestock, against T. gondii and other intracellular pathogens
Tools to Support Policy Decisions Related to Treatment Strategies and Surveillance of Schistosomiasis Japonica towards Elimination
Immunodiagnostic assays are widely applied in the field to control schistosomiasis in P.R. China as the prevalence and infection intensity of schistosome infections decrease. Field evaluations are urgently needed before they can be adopted to support policy decisions of the national programme for the control and elimination of schistosomiasis in P.R. China. We carried out a large scale cross-sectional survey in field settings with different transmission situations to validate immunodiagnostic tools that can be used to formulate new schistosomiasis elimination strategy in P.R. China. Regarding stool examination as gold reference, the validity and screening efficacy of each immunodiagnostic kit were calculated and compared with each other. The association of the prevalence of schistosomiasis and antibody positive rates determined by immunoassays were analyzed using Pearson's correlation coefficient values. The study indicates that which test to use with the elimination strategy is dependent on the purpose of testing, the endemic status of community and the resources available. And more sensitive methods need to be explored and used to target infected individuals for treatment or to eliminate schistosomiasis
Cell motility: the integrating role of the plasma membrane
The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process
- …