22 research outputs found

    Magnetic domain texture and the Dzyaloshinskii-Moriya interaction in Pt/Co/IrMn and Pt/Co/FeMn thin films with perpendicular exchange bias

    Get PDF
    Antiferromagnetic materials present us with rich and exciting physics, which we can exploit to open new avenues in spintronic device applications. We explore perpendicularly magnetized exchange biased systems of Pt/Co/IrMn and Pt/Co/FeMn, where the crossover from paramagnetic to antiferromagnetic behavior in the IrMn and FeMn layers is accessed by varying the thickness. We demonstrate, through magneto-optical imaging, that the magnetic domain morphology of the ferromagnetic Co layer is influenced by the Néel order of the antiferromagnet (AFM) layers. We relate these variations to the anisotropy energy of the AFM layer and the ferromagnet-antiferromagnet (FM-AFM) interlayer exchange coupling. We also quantify the interfacial Dzyaloshinskii-Moriya interaction (DMI) in these systems by Brillouin light scattering spectroscopy. The DMI remains unchanged, within experimental uncertainty, for different phases of the AFM layers, which allows us to conclude that the DMI is largely insensitive to both AFM layer spin order and exchange bias. Understanding such fundamental mechanisms is crucial for the development of future devices employing chiral spin textures, such as Néel domain walls and skyrmions, in FM-AFM heterostructures

    Domain-wall motion and interfacial Dzyaloshinskii-Moriya interactions in Pt/Co/Ir(tIr)/Ta multilayers

    Get PDF
    The interfacial Dzyaloshinskii-Moriya interaction (DMI) is important for chiral domain walls (DWs) and for stabilizing magnetic skyrmions. We study the effects of introducing increasing thicknesses of Ir, from zero to 2 nm, into a Pt/Co/Ta multilayer between the Co and Ta layers. There is a marked increase in magnetic moment, due to the suppression of the dead layer at the interface with Ta, but the perpendicular anisotropy is hardly affected. All samples show a universal scaling of the field-driven DW velocity across the creep and depinning regimes. Asymmetric bubble expansion shows that DWs in all of the samples have the left-handed Néel form. The value of in-plane magnetic field at which the creep velocity shows a minimum drops markedly on the introduction of Ir, as does the frequency shift of the Stokes and anti-Stokes peaks in Brillouin light scattering (BLS) measurements. Despite this qualitative similarity, there are quantitative differences in the DMI strength given by the two measurements, with BLS often returning higher values. Many features in bubble expansion velocity curves do not fit simple models commonly used, namely a lack of symmetry about the velocity minimum and no difference in velocities at high in-plane fields. These features are explained by the use of a new model in which the depinning field is allowed to vary with in-plane field in a way determined from micromagnetic simulations. This theory shows that the velocity minimum underestimates the DMI field, consistent with BLS giving higher values. Our results suggest that the DMI at an Ir/Co interface has the same sign as the DMI at a Pt/Co interface

    Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures

    Full text link
    Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometer size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetisation at the nanoscale. To date, chiral skyrmion structures have been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films and under external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero applied magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral N\'eel internal structure which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.Comment: Submitted version. Extended version to appear in Nature Nanotechnolog

    Key points in the determination of the interfacial Dzyaloshinskii-Moriya interaction from asymmetric bubble domain expansion

    Get PDF
    Different models have been used to evaluate the interfacial Dzyaloshinskii-Moriya interaction (DMI) from the asymmetric bubble expansion method using magneto-optics. Here we investigate the most promising candidates over a range of different magnetic multilayers with perpendicular anisotropy. Models based on the standard creep hypothesis are not able to reproduce the domain wall (DW) velocity profile when the DW roughness is high. Our results demonstrate that the DW roughness and the interface roughness of the sample layers are correlated. Furthermore, we give guidance on how to obtain reliable results for the DMI value with this popular method. A comparison of the results with Brillouin light scattering (BLS) measurements on the same samples shows that the BLS approach often results in higher measured values of DMI

    Ultra-low magnetic damping of a metallic ferromagnet

    No full text
    Magnetic damping is of critical importance for devices that seek to exploit the electronic spin degree of freedom, as damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferro-magnetic materials(1-3). This presents a challenge for a broad range of applications in spintronics(4) and spin-orbitronics that depend on materials and structures with ultra-low dampine(5,6). It is believed that achieving ultra-low damping in metallic ferromagnets is limited by the scattering of magnons by the conduction electrons. However, we report on a binary alloy of cobalt and iron that overcomes this obstacle and exhibits a damping parameter approaching 10(-4), which is comparable to values reported only for ferrimagnetic insulators(7,8). We explain this phenomenon by a unique feature of the band structure in this system: the density of states exhibits a sharp minimum at the Fermi level at the same alloy concentration at which the minimum in the magnetic damping is found. This discovery provides both a significant fundamental understanding of damping mechanisms and a test of the theoretical predictions proposed by Mankovsky and colleagues(3)
    corecore