34 research outputs found

    Neutrino-driven Explosions

    Full text link
    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. A solution is crucial for deciphering the SN phenomenon, for predicting observable signals such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational waves, for defining the role of SNe in the evolution of galaxies, and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the SN in the explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core-bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN blast. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next Galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 54 pages, 13 figure

    Explosion Mechanisms of Core-Collapse Supernovae

    Full text link
    Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of ONeMg-core and some Fe-core progenitors. The characteristics of the neutrino emission from new-born neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from two to three dimensions, more realism, new perspectives, and hopefully answers to long-standing questions are coming into reach.Comment: 35 pages, 11 figures (29 eps files; high-quality versions can be obtained upon request); accepted by Annual Review of Nuclear and Particle Scienc

    How much H and He is 'hidden' in SNe Ib/c? - II. Intermediate-mass objects: A 22M<inf>⊙</inf>progenitor case study

    Get PDF
    Stripped envelope supernovae are a sub-class of core-collapse supernovae showing several stages of H/He shell stripping that determines the type: H-free/He-poor SNe are classified as Type Ic, H-poor/He-rich are Type Ib, and H/He-rich are Type IIb. Stripping H/He with only stellar wind requires significantly higher mass-loss rates than observed while binary-involved mass transfer may usually not strip enough to produce H/He free SNe. Type Ib/c SNe are sometimes found to include weak H/He transient lines as a product of a trace amount of H/He left over from stripping processes. The extent and mass of the H/He required to produce these lines is not well known. In this work, a 22 M⊙progenitor model is stripped of the H/He shells in five steps prior to collapse and then exploded at four explosion energies. Requiring both optical and near-infrared He I lines for helium identification does not allow much He mass to be hidden in SE-SNE. Increasing the mass of He above the CO core delays the visibility of OI 7774 in early spectra. Our SN Ib-like models are capable of reproducing the spectral evolution of a set of observed SNe with reasonable estimated Ek accuracy. Our SNIIb-like models can partially reproduce low energy observed SN IIb, but we find no observed comparison for the SN IIb-like models with high Ek

    The Explosion Mechanism of Core-Collapse Supernovae and Its Observational Signatures

    Full text link
    The death of massive stars is shrouded in many mysteries. One of them is the mechanism that overturns the collapse of the degenerate iron core into an explosion, a process that determines the supernova explosion energy, properties of the surviving compact remnant, and the nucleosynthetic yields. The number of core-collapse supernova observations has been growing with an accelerating pace thanks to modern time-domain astronomical surveys and new tests of the explosion mechanism are becoming possible. We review predictions of parameterized supernova explosion models and compare them with explosion properties inferred from observed light curves, spectra, and neutron star masses.Comment: Reviews in Frontiers of Modern Astrophysics; From Space Debris to Cosmology, edited by Kab\'ath, Petr; Jones, David; Skarka, Marek. ISBN: 978-3-030-38509-5. Cham: Springer International Publishing, 2020, pp. 189-21

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Neutrino Signatures From Young Neutron Stars

    Get PDF
    After a successful core collapse supernova (CCSN) explosion, a hot dense proto-neutron star (PNS) is left as a remnant. Over a time of 20 or so seconds, this PNS emits the majority of the neutrinos that come from the CCSN, contracts, and loses most of its lepton number. This is the process by which all neutron stars in our galaxy are likely born. The emitted neutrinos were detected from supernova (SN) 1987A, and they will be detected in much greater numbers from any future galactic CCSN. These detections can provide a direct window into the properties of the dense matter encountered inside neutron stars, and they can affect nucleosynthesis in the material ejected during the CCSN. In this chapter, we review the basic physics of PNS cooling, including the basic equations of PNS structure and neutrino diffusion in dense matter. We then discuss how the nuclear equation of state, neutrino opacities in dense matter, and convection can shape the temporal behavior of the neutrino signal. We also discuss what was learned from the late-time SN 1987A neutrinos, the prospects for detection of these neutrinos from future galactic CCSNe, and the effects these neutrinos can have on nucleosynthesis

    The 30 Year Search for the Compact Object in SN 1987A

    Get PDF
    Despite more than 30 years of searching, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy (0.1 x 10(-26) erg s(-1) cm(-2) Hz(-1)) at 213 GHz, 1 L-circle dot (6 x 10(-29) erg s(-1) cm(-2) Hz(-1)) in the optical if our line of sight is free of ejecta dust, and 10(36) erg s(-1) (2 x 10(-30) erg s(-1) cm(-2) Hz(-1) ) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models. The allowed bolometric luminosity of the compact object is 22 L-circle dot if our line of sight is free of ejecta dust, or 138L(circle dot) if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star (NS) to <4-8 MK and do not exclude models, which typically are in the range 3-4 MK. For the simplest accretion model, the accretion rate for an efficiency 77 is limited to <10(-11) eta(-1) M-circle dot yr(-1), which excludes most predictions. For pulsar activity modeled by a rotating magnetic dipole in vacuum, the limit on the magnetic field strength (B) for a given spin period (P) is B less than or similar to 10(14) P-2 G s(-2), which firmly excludes pulsars comparable to the Crab. By combining information about radiation reprocessing and geometry, we infer that the compact object is a dust-obscured thermally emitting NS, which may appear as a region of higher-temperature ejecta dust emission

    Supernova remnants: the X-ray perspective

    Get PDF
    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2 column-layout. 78 pages, 42 figures. This replaced version has some minor language edits and several references have been correcte

    The delay of shock breakout due to circumstellar material evident in most type II supernovae

    Get PDF
    Type II supernovae (SNe II) originate from the explosion of hydrogen-rich supergiant massive stars. Their first electromagnetic signature is the shock breakout (SBO), a short-lived phenomenon that can last for hours to days depending on the density at shock emergence. We present 26 rising optical light curves of SN II candidates discovered shortly after explosion by the High Cadence Transient Survey and derive physical parameters based on hydrodynamical models using a Bayesian approach. We observe a steep rise of a few days in 24 out of 26 SN II candidates, indicating the systematic detection of SBOs in a dense circumstellar matter consistent with a mass loss rate of M ˙  > 10−4M⊙ yr−1 or a dense atmosphere. This implies that the characteristic hour-timescale signature of stellar envelope SBOs may be rare in nature and could be delayed into longer-lived circumstellar material SBOs in most SNe II
    corecore