1,374 research outputs found

    Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy

    Get PDF
    GaN exists in both wurtzite and zinc-blende phases and the growths of the two on its (0001) or (111) surfaces are achieved by choosing proper deposition conditions of molecular-beam epitaxy (MBE). At low substrate temperatures but high gallium fluxes, metastable zinc-blende GaN films are obtained, whereas at high temperatures and/or using high nitrogen fluxes, equilibrium wurtzite phase GaN epilayers resulted. This dependence of crystal structure on substrate temperature and source flux is not affected by deposition rate. Rather, the initial stage nucleation kinetics plays a primary role in determining the crystallographic structures of epitaxial GaN by MBE. © 2006 American Institute of Physics.published_or_final_versio

    A study of Inx Ga1-x N growth by reflection high-energy electron diffraction

    Get PDF
    Epitaxial growth of Inx Ga1-x N alloys on GaN (0001) by plasma-assisted molecular-beam epitaxy is investigated using the in situ reflection high-energy electron-diffraction (RHEED) technique. Based on RHEED pattern changes over time, the transition of growth mode from two-dimensional (2D) nucleation to three-dimensional islanding is studied for various indium compositions. RHEED specular-beam intensity oscillations are recorded during the 2D wetting-layer growth, and the dependences of the oscillation period/frequency on the substrate temperature and source flux are established. By measuring the spacing between diffraction spots in RHEED, we also estimated indium composition, x, in alloys grown under different flux combinations. Incorporation coefficients of both gallium and indium are derived. Possible surface segregation of indium atoms is finally examined. © 2005 American Institute of Physics.published_or_final_versio

    Coherent and dislocated three-dimensional islands of Inx Ga1-x N self-assembled on GaN(0001) during molecular-beam epitaxy

    Get PDF
    Molecular-beam epitaxy of Inx Ga1-x N alloy on GaN(0001) is investigated by scanning tunneling microscopy. The Stranski-Krastanov mode of growth of the alloy is followed, where the newly nucleated three-dimensional islands are initially coherent to the underlying GaN and the wetting layer, but then become dislocated when grown bigger than about 20 nm in the lateral dimension. Two types of islands show different shapes, where the coherent ones are cone shaped and the dislocated ones are pillar like, having flat-tops. Within a certain range of material coverage, the surface contains both coherent and dislocated islands, showing an overall bimodal island-size distribution. The continued deposition on such surfaces leads to the pronounced growth of dislocated islands, whereas the sizes of the coherent islands change very little. © 2005 The American Physical Society.published_or_final_versio

    InN Island shape and its dependence on growth condition of molecular-beam epitaxy

    Get PDF
    The three-dimensional (3D) island shapes of the InN and its dependence on growth conditions of molecular-beam epitaxy (MBE) were analyzed. The islands were dislocated and the strain in an island depended on its size. The pillar-shaped islands with low aspect ratios represented the equilibrium shape, and the pyrimidal islands with higher aspect ratios were limited by kinetics during MBE growth. The decreasing trend of island aspect ratio with respect to island size was attributed to gradual relaxation of residual strain in dislocated islands.published_or_final_versio

    Scaling of three-dimensional InN islands grown on GaN(0001) by molecular-beam epitaxy

    Get PDF
    The scaling property of three-dimensional InN islands nucleated on GaN(0001) surface during molecular-beam epitaxy (MBE) is investigated. Due to the large lattice mismatch between InN and GaN (∼10%), the islands formed from the Stranski-Krastanow growth mode are dislocated. Despite the variations in (residual) strain and the shape, both the island size and pair separation distributions show the scaling behavior. Further, the size distribution resembles that for submonolayer homoepitaxy with the critical island size i = 1, suggesting that detachment of atoms is not significant. The above results also indicate strain is insignificant in determining the nucleation and growth of dislocated islands during heteroepitaxy by MBE.published_or_final_versio

    Stabilizing forces acting on ZnO polar surfaces: STM, LEED, and DFT

    Get PDF
    published_or_final_versio

    In situ revelation of a zinc-blende InN wetting layer during Stranski-Krastanov growth on GaN(0001) by molecular-beam epitaxy

    Get PDF
    Indium nitride (InN) exists in two different structural phases, the equilibrium wurtzite (w) and the metastable zinc-blende (zb) phases. It is of scientific interest and practical relevance to examine the crystal structure of the epifilms during growth. In this paper, we use Patterson function inversion of low-energy electron diffraction I-V curves to reveal the preferential formation of zinc-blende InN wetting layer during the Stranski-Krastanov growth on GaN(0001). For three-dimensional islands nucleated afterwards on top of the wetting layer and for thick InN films, the equilibrium wurtzite structure is observed instead. This in situ revelation of the InN lattice structure is confirmed by ex situ transmission electron microscopy studies. Finally, the formation of zb-InN layer on w-GaN is explained in terms of the strain in the system. © 2005 The American Physical Society.published_or_final_versio

    Structure-activity relationships for analogs of the tuberculosis drug bedaquiline with the naphthalene unit replaced by bicyclic heterocycles

    Get PDF
    Replacing the naphthalene C-unit of the anti-tuberculosis drug bedaquiline with a range of bicyclic heterocycles of widely differing lipophilicity gave analogs with a 4.5-fold range in clogP values. The biological results for these compounds indicate on average a lower clogP limit of about 5.0 in this series for retention of potent inhibitory activity (MIC90s) against M.tb in culture. Some of the compounds also showed a significant reduction in inhibition of hERG channel potassium current compared with bedaquiline, but there was no common structural feature that distinguished these

    Application of immortalized mouse dental papilla cells for tooth bioengineering

    Get PDF
    published_or_final_versio

    High-throughput, quantitative analyses of genetic interactions in E. coli.

    Get PDF
    Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli
    • …
    corecore