10 research outputs found

    An Alternating GluN1-2-1-2 Subunit Arrangement in Mature NMDA Receptors

    Get PDF
    NMDA receptors (NMDARs) form glutamate-gated ion channels that play a critical role in CNS physiology and pathology. Together with AMPA and kainate receptors, NMDARs are known to operate as tetrameric complexes with four membrane-embedded subunits associating to form a single central ion-conducting pore. While AMPA and some kainate receptors can function as homomers, NMDARs are obligatory heteromers composed of homologous but distinct subunits, most usually of the GluN1 and GluN2 types. A fundamental structural feature of NMDARs, that of the subunit arrangement around the ion pore, is still controversial. Thus, in a typical NMDAR associating two GluN1 and two GluN2 subunits, there is evidence for both alternating 1/2/1/2 and non-alternating 1/1/2/2 arrangements. Here, using a combination of electrophysiological and cross-linking experiments, we provide evidence that functional GluN1/GluN2A receptors adopt the 1/2/1/2 arrangement in which like subunits are diagonal to one another. Moreover, based on the recent crystal structure of an AMPA receptor, we show that in the agonist-binding and pore regions, the GluN1 subunits occupy a “proximal” position, closer to the central axis of the channel pore than that of GluN2 subunits. Finally, results obtained with reducing agents that differ in their membrane permeability indicate that immature (intracellular) and functional (plasma-membrane inserted) pools of NMDARs can adopt different subunit arrangements, thus stressing the importance of discriminating between the two receptor pools in assembly studies. Elucidating the quaternary arrangement of NMDARs helps to define the interface between the subunits and to understand the mechanism and pharmacology of these key signaling receptors

    Conformational rearrangements in the S6 domain and C-linker during gating in CNGA1 channels.

    No full text
    Item does not contain fulltextThis work completes previous findings and, using cysteine scanning mutagenesis (CSM) and biochemical methods, provides detailed analysis of conformational changes of the S6 domain and C-linker during gating of CNGA1 channels. Specific residues between Phe375 and Val424 were mutated to a cysteine in the CNGA1 and CNGA1(cys-free) background and the effect of intracellular Cd(2+) or cross-linkers of different length in the open and closed state was studied. In the closed state, Cd(2+) ions inhibited mutant channels A406C and Q409C and the longer cross-linker reagent M-4-M inhibited mutant channels A406C(cys-free) and Q409C(cys-free). Cd(2+) ions inhibited mutant channels D413C and Y418C in the open state, both constructed in a CNGA1 and CNGA1(cys-free) background. Our results suggest that, in the closed state, residues from Phe375 to approximately Ala406 form a helical bundle with a three-dimensional (3D) structure similar to those of the KcsA; furthermore, in the open state, residues from Ser399 to Gln409 in homologous subunits move far apart, as expected from the gating in K(+) channels; in contrast, residues from Asp413 to Tyr418 in homologous subunits become closer in the open state

    Artificial Intelligence and Information Retrieval

    No full text
    International audienceInformation Retrieval (IR) is a process involving activities related to human cognition and to knowledge management; as such, the definition of Information Retrieval Systems can benefit of the application of artificial intelligence techniques to account for the intrinsic uncertainty and imprecision that characterize the subjectivity of this task. This chapter presents a synthetic analysis of the IR task from an AI perspective and explores how AI techniques are employed within IR

    Mucopolysaccharidosen

    No full text
    corecore