352 research outputs found

    High-resolution radiation hybrid mapping in wheat: an essential tool for the construction of the wheat physical maps

    Get PDF
    ArtigoO poema épico da época moderna nasce na literatura portuguesa como oceânico logo a partir da sua gestação. Este estudo enquadra a sua génese num contexto europeu.Università di Roma, La Sapienz

    Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation

    Get PDF
    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs

    Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone

    Get PDF
    In thermo-fluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, spheres, curved walls, wavy plates, cones etc. play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can exert a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cones has gained exceptional interest. A theoretical analysis is developed to investigate the nonlinear, steady-state, laminar, non-isothermal convection boundary layer flows of viscoelastic fluid from a vertical permeable cone with a power-law variation in both temperature and concentration. The Jeffery’s viscoelastic model simulates the non-Newtonian characteristics of polymers, which constitutes the novelty of the present work. The transformed conservation equations for linear momentum, energy and concentration are solved numerically under physically viable boundary conditions using the finite-differences Keller-Box scheme. The impact of Deborah number (De), ratio of relaxation to retardation time (λ), surface suction/injection parameter (fw), power-law exponent (n), buoyancy ratio parameter (N) and dimensionless tangential coordinate (Ѯ) on velocity, surface temperature, concentration, local skin friction, heat transfer rate and mass transfer rate in the boundary layer regime are presented graphically. It is observed that increasing values of De reduces velocity whereas the temperature and concentration are increased slightly. Increasing λ enhance velocity however reduces temperature and concentration slightly. The heat and mass transfer rate are found to decrease with increasing De and increase with increasing values of λ. The skin friction is found to decrease with a rise in De whereas it is elevated with increasing values of λ. Increasing values of fw and n, decelerates the flow and also cools the boundary layer i.e. reduces temperature and also concentration. The study is relevant to chemical engineering systems, solvent and polymeric processes

    Luminescent Organic–Inorganic Hybrids of Functionalized Mesoporous Silica SBA-15 by Thio-Salicylidene Schiff Base

    Get PDF
    Novel organic–inorganic mesoporous luminescent hybrid material N, N′-bis(salicylidene)-thiocarbohydrazide (BSTC-SBA-15) has been obtained by co-condensation of tetraethyl orthosilicate and the organosilane in the presence of Pluronic P123 surfactant as a template. N,N′-bis(salicylidene)-thiocarbohydrazide (BSTC) grafted to the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TESPIC) was used as the precursor for the preparation of mesoporous materials. In addition, for comparison, SBA-15 doped with organic ligand BSTC was also synthesized, denoted as BSTC/SBA-15. This organic–inorganic hybrid material was well-characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (HRTEM), and photoluminescence spectra, which reveals that they all have high surface area, uniformity in the mesostructure. The resulting materials (BSTC-SBA-15 and BSTC/SBA-15) exhibit regular uniform microstructures, and no phase separation happened for the organic and the inorganic compounds was covalently linked through Si–O bonds via a self-assemble process. Furthermore, the two materials have different luminescence range: BSTC/SBA-15 presents the strong dominant green luminescence, while BSTC-functionalized material BSTC-SBA-15 shows the dominant blue emission

    Network electro-thermal simulation of non-isothermal magnetohydrodynamic heat transfer from a transpiring cone with buoyancy and pressure work

    Get PDF
    The steady, axisymmetric laminar natural convection boundary layer flow from a non-isothermal vertical circular porous cone under a transverse magnetic field, with the cone vertex located at the base, is considered. The pressure work effect is included in the analysis. The governing boundary layer equations are formulated in an (x,y) coordinate system (parallel and normal to the cone slant surface), and the magnetic field effects are simulated with a hydromagnetic body force term in the momentum equation. A dimensionless transformation is performed rendering the momentum and also heat conservation equations. The thermal convection flow is shown to be controlled by six thermophysical parameters- local Hartmann number, local Grashof number, pressure work parameter, temperature power law exponent, Prandtl number and the transpiration parameter. The transformed parabolic partial differential equations are solved numerically using the Network Simulation Method (NSM) based on the electrical-thermodynamic analogy. Excellent correlation of the zero Hartmann number case is achieved with earlier electrically non-conducting solutions. Local shear stress function (skin friction) is found to be strongly decreased with an increase in Prandtl number (Pr), with negative values (corresponding to flow reversal) identified for highest Pr with further distance along the streamwise direction. A rise in local Hartmann number, is observed to depress skin friction. Increasing temperature power law index, corresponding to steeper temperature gradient at the wall, strongly reduces skin friction at the cone surface. A positive rise in pressure work parameter decreases skin friction whereas a negative increase elevates the skin friction for some distance along the cone surface from the apex. Local heat transfer gradient is markedly boosted with a rise in Prandtl number but decreased principally at the cone surface with increasing local Hartmann number. Increasing temperature power law index conversely increases the local heat transfer gradient, at the cone surface. A positive rise in pressure work parameter increases local heat transfer gradient while negative causes it to decrease. A rise in local Grashof number boosts local skin friction and velocity into the boundary layer; local heat transfer gradient is also increased with a rise in local Grashof number whereas the temperature in the boundary layer is noticeably reduced. Applications of the work arise in spacecraft magnetogas dynamics, chemical cooling systems and industrial magnetic materials processing
    corecore