44 research outputs found

    ART: A machine learning Automated Recommendation Tool for synthetic biology

    Get PDF
    Biology has changed radically in the last two decades, transitioning from a descriptive science into a design science. Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such as renewable biofuels or anticancer drugs. However, traditional synthetic biology approaches involve ad-hoc engineering practices, which lead to long development times. Here, we present the Automated Recommendation Tool (ART), a tool that leverages machine learning and probabilistic modeling techniques to guide synthetic biology in a systematic fashion, without the need for a full mechanistic understanding of the biological system. Using sampling-based optimization, ART provides a set of recommended strains to be built in the next engineering cycle, alongside probabilistic predictions of their production levels. We demonstrate the capabilities of ART on simulated data sets, as well as experimental data from real metabolic engineering projects producing renewable biofuels, hoppy flavored beer without hops, and fatty acids. Finally, we discuss the limitations of this approach, and the practical consequences of the underlying assumptions failing

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis

    No full text
    Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) have been defined as events of clinically significant respiratory deterioration with an unidentifiable cause. They carry a significant mortality and morbidity and while their exact pathogenesis remains unclear, the possibility remains that hidden infection may play a role. The aim of this pilot study was to determine whether changes in the respiratory microbiota occur during an AE-IPF. Bacterial DNA was extracted from bronchoalveolar lavage from patients with stable IPF and those experiencing an AE-IPF. A hyper-variable region of the 16S ribosomal RNA gene (16S rRNA) was amplified, quantified and pyrosequenced. Culture independent techniques demonstrate AE-IPF is associated with an increased BAL bacterial burden compared to stable disease and highlight shifts in the composition of the respiratory microbiota during an AE-IPF
    corecore