586 research outputs found
Long-Term Variations in the Growth and Decay Rates of Sunspot Groups
Using the combined Greenwich (1874-1976) and Solar Optical Observatories
Network (1977-2009) data on sunspot groups, we study the long-term variations
in the mean daily rates of growth and decay of sunspot groups. We find that the
minimum and the maximum values of the annually averaged daily mean growth rates
are ~52% per day and ~183% per day, respectively, whereas the corresponding
values of the annually averaged daily mean decay rates are ~21% per day and
~44% per day, respectively. The average value (over the period 1874-2009) of
the growth rate is about 70% more than that of the decay rate. The growth and
the decay rates vary by about 35% and 13%, respectively, on a 60-year
time-scale. From the beginning of Cycle 23 the growth rate is substantially
decreased and near the end (2007-2008) the growth rate is lowest in the past
about 100 years.Comment: 1 table, 13 figures, accepted by Solar Physic
The G-O Rule and Waldmeier Effect in the Variations of the Numbers of Large and Small Sunspot Groups
We have analysed the combined Greenwich and Solar Optical Observing Network
(SOON) sunspot group data during the period of 1874-2011 and determined
variations in the annual numbers (counts) of the small, large and big sunspot
groups (these classifications are made on the basis of the maximum areas of the
sunspot groups). We found that the amplitude of an even-numbered cycle of the
number of large groups is smaller than that of its immediately following
odd-numbered cycle. This is consistent with the well known Gnevyshev and Ohl
rule or G-O rule of solar cycles, generally described by using the Zurich
sunspot number (Rz). During cycles 12-21 the G-O rule holds good for the
variation in the number of small groups also, but it is violated by cycle pair
(22, 23) as in the case of Rz. This behaviour of the variations in the small
groups is largely responsible for the anomalous behaviour of Rz in cycle pair
(22, 23). It is also found that the amplitude of an odd-numbered cycle of the
number of small groups is larger than that of its immediately following
even-numbered cycle. This can be called as `reverse G-O rule'. In the case of
the number of the big groups, both cycle pairs (12, 13) and (22, 23) violated
the G-O rule. In many cycles the positions of the peaks of the small, large,
and big groups are different and considerably differ with respect to the
corresponding positions of the Rz peaks. In the case of cycle 23, the
corresponding cycles of the small and large groups are largely symmetric/less
asymmetric (Waldmeier effect is weak/absent) with their maxima taking place two
years later than that of Rz. The corresponding cycle of the big groups is more
asymmetric (strong Waldmeier effect) with its maximum epoch taking place at the
same time as that of Rz.Comment: 13 pages, 5 figures, 1 table, accepted by Solar Physic
Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function
A new method is presented for Fourier decomposition of the Helmholtz Green
Function in cylindrical coordinates, which is equivalent to obtaining the
solution of the Helmholtz equation for a general ring source. The Fourier
coefficients of the Helmholtz Green function are split into their half
advanced+half retarded and half advanced-half retarded components. Closed form
solutions are given for these components in terms of a Horn function and a
Kampe de Feriet function, respectively. The systems of partial differential
equations associated with these two-dimensional hypergeometric functions are
used to construct a fourth-order ordinary differential equation which both
components satisfy. A second fourth-order ordinary differential equation for
the general Fourier coefficent is derived from an integral representation of
the coefficient, and both differential equations are shown to be equivalent.
Series solutions for the various Fourier coefficients are also given, mostly in
terms of Legendre functions and Bessel/Hankel functions. These are derived from
the closed form hypergeometric solutions or an integral representation, or
both. Numerical calculations comparing different methods of calculating the
Fourier coefficients are presented
On the structure and evolution of a polar crown prominence/filament system
Polar crown prominences are made of chromospheric plasma partially circling
the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D
dynamics of a polar crown prominence using high cadence EUV images from the
Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft
of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using
time series across specific structures we compare flows across the disk in 195A
with the prominence dynamics seen on the limb. The densest prominence material
forms vertical columns which are separated by many tens of Mm and connected by
dynamic bridges of plasma that are clearly visible in 304/171A two-color
images. We also observe intermittent but repetitious flows with velocity 15
km/s in the prominence that appear to be associated with EUV bright points on
the solar disk. The boundary between the prominence and the overlying cavity
appears as a sharp edge. We discuss the structure of the coronal cavity seen
both above and around the prominence. SDO/HMI and GONG magnetograms are used to
infer the underlying magnetic topology. The evolution and structure of the
prominence with respect to the magnetic field seems to agree with the filament
linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics
Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar
Evolution of active and polar photospheric magnetic fields during the rise of Cycle 24 compared to previous cycles
The evolution of the photospheric magnetic field during the declining phase
and minimum of Cycle 23 and the recent rise of Cycle 24 are compared with the
behavior during previous cycles. We used longitudinal full-disk magnetograms
from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term
Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), the
Spectromagnetograph and the 512-Channel Magnetograph instruments, and
longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We
analyzed 37 years of observations from these two observatories that have been
observing daily, weather permitting, since 1974, offering an opportunity to
study the evolving relationship between the active region and polar fields in
some detail over several solar cycles. It is found that the annual averages of
a proxy for the active region poloidal magnetic field strength, the magnetic
field strength of the high-latitude poleward streams, and the time derivative
of the polar field strength are all well correlated in each hemisphere. These
results are based on statistically significant cyclical patterns in the active
region fields and are consistent with the Babcock-Leighton phenomenological
model for the solar activity cycle. There was more hemispheric asymmetry in the
activity level, as measured by total and maximum active region flux, during
late Cycle 23 (after around 2004), when the southern hemisphere was more
active, and Cycle 24 up to the present, when the northern hemisphere has been
more active, than at any other time since 1974. The active region net proxy
poloidal fields effectively disappeared in both hemispheres around 2004, and
the polar fields did not become significantly stronger after this time. We see
evidence that the process of Cycle 24 field reversal has begun at both poles.Comment: Accepted for publication in Solar Physic
Triggering an eruptive flare by emerging flux in a solar active-region complex
A flare and fast coronal mass ejection originated between solar active
regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in
front of the leading sunspot of the trailing region 11515. Analyzing the
evolution of the photospheric magnetic flux and the coronal structure, we find
that the flux emergence triggered the eruption by interaction with overlying
flux in a non-standard way. The new flux neither had the opposite orientation
nor a location near the polarity inversion line, which are favorable for strong
reconnection with the arcade flux under which it emerged. Moreover, its flux
content remained significantly smaller than that of the arcade (approximately
40 %). However, a loop system rooted in the trailing active region ran in part
under the arcade between the active regions, passing over the site of flux
emergence. The reconnection with the emerging flux, leading to a series of jet
emissions into the loop system, caused a strong but confined rise of the loop
system. This lifted the arcade between the two active regions, weakening its
downward tension force and thus destabilizing the considerably sheared flux
under the arcade. The complex event was also associated with supporting
precursor activity in an enhanced network near the active regions, acting on
the large-scale overlying flux, and with two simultaneous confined flares
within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and
Stellar Flares. 25 pages, 12 figure
Perception of Relative Depth Interval: Systematic Biases in Perceived Depth
Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.</jats:p
Fraction of uninfected walkers in the one-dimensional Potts model
The dynamics of the one-dimensional q-state Potts model, in the zero
temperature limit, can be formulated through the motion of random walkers which
either annihilate (A + A -> 0) or coalesce (A + A -> A) with a q-dependent
probability. We consider all of the walkers in this model to be mutually
infectious. Whenever two walkers meet, they experience mutual contamination.
Walkers which avoid an encounter with another random walker up to time t remain
uninfected. The fraction of uninfected walkers is investigated numerically and
found to decay algebraically, U(t) \sim t^{-\phi(q)}, with a nontrivial
exponent \phi(q). Our study is extended to include the coupled
diffusion-limited reaction A+A -> B, B+B -> A in one dimension with equal
initial densities of A and B particles. We find that the density of walkers
decays in this model as \rho(t) \sim t^{-1/2}. The fraction of sites unvisited
by either an A or a B particle is found to obey a power law, P(t) \sim
t^{-\theta} with \theta \simeq 1.33. We discuss these exponents within the
context of the q-state Potts model and present numerical evidence that the
fraction of walkers which remain uninfected decays as U(t) \sim t^{-\phi},
where \phi \simeq 1.13 when infection occurs between like particles only, and
\phi \simeq 1.93 when we also include cross-species contamination.Comment: Expanded introduction with more discussion of related wor
Signatures of the slow solar wind streams from active regions in the inner corona
Some of local sources of the slow solar wind can be associated with
spectroscopically detected plasma outflows at edges of active regions
accompanied with specific signatures in the inner corona. The EUV telescopes
(e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes
observed extended ray-like structures seen at the limb above active regions in
1MK iron emission lines and described as "coronal rays". To verify the
relationship between coronal rays and plasma outflows, we analyze an isolated
active region (AR) adjacent to small coronal hole (CH) observed by different
EUV instruments in the end of July - beginning of August 2009. On August 1 EIS
revealed in the AR two compact outflows with the Doppler velocities V =10-30
km/s accompanied with fan loops diverging from their regions. At the limb the
ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July
31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic
field lines expanded to the streamer stalks. Using the DEM analysis, it was
found that the fan loops diverged from the outflow regions had the dominant
temperature of ~1 MK, which is similar to that of the outgoing plasma streams.
Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were
conformed with identification of the ARCH as a source region at the
Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the
study support the suggestion that coronal rays can represent signatures of
outflows from ARs propagating in the inner corona along open field lines into
the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
- …
