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Human expert analyses are commonly used in bioacoustic studies and can potentially limit the

reproducibility of these results. In this paper, a machine learning method is presented to statistically

classify avian vocalizations. Automated approaches were applied to isolate bird songs from long

field recordings, assess song similarities, and classify songs into distinct variants. Because no

positive controls were available to assess the true classification of variants, multiple replicates of

automatic classification of song variants were analyzed to investigate clustering uncertainty. The

automatic classifications were more similar to the expert classifications than expected by chance.

Application of these methods demonstrated the presence of discrete song variants in an island

population of the New Zealand hihi (Notiomystis cincta). The geographic patterns of song variation

were then revealed by integrating over classification replicates. Because this automated approach

considers variation in song variant classification, it reduces potential human bias and facilitates the

reproducibility of the results. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4919329]

[JFL] Pages: 2542–2551

I. INTRODUCTION

Many bioacoustic studies rely on accurate classifications

of animal vocalizations recorded in the field. For example,

similarities between avian sound signals are estimated and

patterns of variation can be attributed to shared genetic

ancestry (de Kort and ten Cate, 2001), shared learning tem-

plate (Bond and Diamond, 2005), or shared environmental

pressures on sound production (Slabbekoorn and den Boer-

Visser, 2006). Bioacoustic analyses, once put into context,

can, for example, be used to monitor species distribution

(Dawson and Efford, 2009), study population connectivity

(Irwin et al., 2001), or show evidence for song learning

(Podos and Warren, 2007). Therefore, it is critical to reliably

measure sound similarities especially when a large number

of recordings are being analyzed. Moreover, one needs to

minimize any bias that could be introduced by the specific

sensory attributes of human experts, which could preclude

reproducibility of the analysis (Milinski, 1997; Giret et al.,
2011). For example, inconsistency across investigators has

been reported in the classification of humpback whale songs

(Cholewiak et al., 2013).

A common approach to limit human biases in bioacous-

tic signal classification is to use automatic clustering meth-

ods on selected acoustic parameters. For example, artificial

neural networks (ANNs) have been shown to statistically

classify bat calls at the species level as accurately as human

experts (Jennings et al., 2008). Linear discriminant analysis

(LDA) has also been used to identify shared call variants in

captive red crossbills (Sewall, 2009), but expert knowledge

had to be incorporated to finalize the classification. While

LDA can help identify the acoustic parameters that best dis-

criminate between individuals (Wanker and Fischer, 2013),

the relevance of these parameters cannot be evaluated

a priori when no information is available to estimate classifi-

cation accuracy. When classifying reoccurring motifs consti-

tuting the vocalization of a single individual, e.g., bird

song variants, the “true” classification of these variants is

unknown. In that case, no controls are available to select the

most relevant features of the songs to be used to define

variants. In behavioral studies, one needs to focus on var-

iants to which the species under study is sensitive. Variants

that can be found by comparing parameters not perceived by

that species may lead to false conclusions. Although the

different variants defined according to these parameters

could potentially be perceived differently by the human ear,a)Electronic mail: l.ranjard@auckland.ac.nz
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they would, for instance, have no effect on the animal song

acquisition through learning. Therefore, particular care needs

to be taken in categorizing song elements in behavioral

research. Ideally, laboratory tests are performed to analyze

how the bird’s sensory system responds to song signals

(Margoliash, 2002), but this is often not feasible, in particu-

lar, for endangered species. Without any psychoacoustic

study available, it remains difficult to select the parameters

that are most important for the acoustic sensory system of a

given species.

We utilize, here, an automatic method to measure

acoustic similarities and classify bird vocalizations in an

effort to limit prior selection of sound features, avoid human

bias, and offer a way to achieve reproducible bioacoustic

analysis. Combinations of speech recognition sound parame-

ters and ANNs have been used to perform individual recog-

nition in primate calls (Mielke and Zuberb€uhler, 2013) and

identify recurring sound pattern in humpback whale songs

(Green et al., 2011) with high accuracy. In particular, intra-

specific song variation in the white-crowned sparrow

(Ranjard and Ross, 2008) and antbirds (Vallejo et al., 2007;

Kirschel et al., 2009) have previously been described using

this type of automatic clustering approach. Here, an updated

version of the evolving tree neural network song classifier

(Ranjard and Ross, 2008) is described with a modified neigh-

borhood size function definition. We use a representation of

the full spectrogram of the songs rather than selected param-

eters to automatically isolate and classify song variants.

Song signals are encoded as mel frequency cepstrum (Davis

and Mermelstein, 1980) and perceptual linear predictive cod-

ing coefficients (Hermansky, 1990). Such representations,

even though originally designed to study the human voice,

have now successfully been applied to multiple studies of

animal vocalizations (Clemins and Johnson, 2006; Ranjard

and Ross, 2008; Tao et al., 2008), including field-based

research (Mielke and Zuberb€uhler, 2013; Potamitis et al.,
2014). Moreover, song acoustic distances can be quantita-

tively measured by aligning pairs of encoded songs. The

distance between two songs, encoded as time sequences of

coefficients, is derived from a dynamic time warping algo-

rithm that searches for a nonlinear optimal match between

the sequences. From the resulting alignment, the edit

distance is defined as the number of operations required to

transform one sequence into the other (Ranjard et al., 2010;

Krull et al., 2012). This acoustic distance measure is incor-

porated in a machine learning classifier to automatically

cluster the songs into variants. The classifier is structured as

an evolving tree self-organizing map (SOM; Kohonen,

1990) ANN (Ranjard and Ross, 2008). The two main advan-

tages of this approach are that (i) the nodes of the classifier

are structured as a binary tree, which result in lower time

complexity for computation, and (ii) unlike the classic SOM,

the size of the network is not constant and, thus, the number

of clusters is not defined a priori, but results from the

specific properties of the set of songs being classified.

We use a set of automatic computational approaches to

analyze songs of a population of the New Zealand hihi

(Notiomystis cincta). First, male songs are isolated from

audio recordings using hidden Markov models (HMMs).

Second, we test for the presence of song variants in the hihi

by studying patterns of song variation. Third, we use an

implementation of the evolving tree neural network to cata-

log the song variants. Male songs are then classified into the

closest variants, which allows us to characterize the song

repertoire of each individual. Finally, we examine geo-

graphic variation in the song repertoires by comparing dis-

tances separating male territories to a distance characterizing

repertoire overlaps. The distribution of the correlation

between these two distances is estimated by integrating over

multiple classification replicates.

II. MATERIALS AND METHODS

A. Study species and song recordings

The hihi is an endemic New Zealand passerine. Few

studies report information about hihi vocal behavior with

only one carried out on the reintroduced Tiritiri Matangi

Island population (Withers, 2005). This predator-free island

is located off the coast of the North Island of New Zealand

(36.60�S 174.89�E) and is composed of regenerating native

forest. While both males and females produce calls associ-

ated with different behaviors, only males sing (Higgins

et al., 2001). The male song consists of a short, loud, high-

pitched whistle involving two to three beats (Higgins et al.,
2001; Withers, 2005). During a song bout, a single male pro-

duces several variations of songs (Higgins et al., 2001), or

song variants as defined by their fine scale structural varia-

tion (Withers, 2005), that are drawn from its song repertoire.

Songs are thought to be mainly territorial in function, being

produced within the territory boundaries, and increasing in

rate at periods of high competition for mating opportunities

(Castro et al., 1996; Higgins et al., 2001; Withers, 2005).

Songs from 22 individual males were recorded on

Tiritiri Matangi Island in the summers of 2004 and 2005

(Withers, 2005). Recordings were made using a digital audio

tape recorder at 44.1 kHz with 16-bit precision. All birds

were uniquely color banded and each male territory was

documented. Territories were centered on artificial nest

boxes and their locations were estimated using global posi-

tioning system (GPS) fixes of the nest boxes.

B. Song extraction

Model-based detectors have been reported to perform

better than energy-based detectors (Skowronski and Harris,

2006). In the present study, songs were extracted from field

recordings using a HMM recognizer (Young et al., 2006),

which allowed us to isolate vocalizations from background

noise (Brandes, 2008; Trifa et al., 2008). Recordings were

encoded using 20 mel-cepstrum coefficients (MFCCs) plus

the C0th cepstral parameter as the energy feature and the

first order temporal derivatives. A window of 20 ms was

used and no cepstral mean normalization was performed. All

transitions were allowed between the six states of each

HMM and the states were modeled as a mixture of four

Gaussian density functions. Five models were manually

defined, aiming to represent background noise and other bird
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species’ calls, human voice, hihi songs, silence, and record-

ing device generated signals.

Recognition efficiency was assessed using a 24 min tape

recording. For that recognition test, the tape was first anno-

tated by a human expert who identified seven hihi songs.

The automatic recognizer extracted a total of nine songs,

including the seven hihi songs identified manually, a saddle-

back song syllable (Philesturnus carunculatus), as well as an

unidentified low amplitude bird vocalization. These two

false positive signals have similar frequency distribution and

duration as a typical hihi song.

After running the automatic recognizer on the full set of

recordings (�27.7 h), each extracted song was visually

checked using a custom graphical user interface in MATLAB

(MathWorks, Natick, MA) to eliminate poor quality and

noisy hihi songs, as well as other types of hihi calls. Both

male and female hihi can produce a great variety of calls

(Higgins et al., 2001). In particular, contact calls are frequent

vocalizations with similar frequency distribution, although

slightly less modulated and shorter than male songs. In total,

590 extracted vocalizations were discarded. The extraction

approach allowed us to construct a library containing a total

of 1879 high quality adult male songs.

C. Preliminary analysis of song variation

1. Song encoding for classification

For classification, songs were represented as sequences

of 12 MFCCs and 12 perceptual linear prediction coefficient

(PLP) vectors. The C0th cepstral parameter was used as the

energy feature. Cepstral mean normalization was performed

on both sets of coefficients by estimating the mean across

each song file. The first of the 26 filterbank channels was set

at 1 kHz and the last one terminated at 20 kHz. This allowed

us to filter out low-frequency content of the signal, which is

generally not relevant for hihi vocalization analysis; hihi

songs mostly contain energy between 2 kHz and 13 kHz

(Withers, 2005). Under a sampling frequency of 44.1 kHz, a

Hamming window of 128 samples, i.e., a frequency resolu-

tion of �345 Hz, with 50% overlap was used for computing

the spectra and the signal had first order pre-emphasis

applied using a coefficient of 0.97. Two frames prior to and

two frames following the current frame were used to esti-

mate the first temporal derivative of each coefficient. Energy

normalization was implemented by subtracting the maxi-

mum value of the energy and adding 1.0. The cepstral coeffi-

cients were re-scaled by liftering the cepstra using a

coefficient of 22 so that they had similar magnitudes

(Rabiner, 1993). As a result, each song was encoded as a

time sequence of 50-parameter vector frames.

2. Song pairwise distances

As a first exploratory analysis, the presence of song var-

iants was investigated by measuring bioacoustic similarities

across a subset of extracted song recordings. This prelimi-

nary analysis was performed to investigate the general pat-

terns of hihi song variation. It allowed us to test whether

songs group into similar sets, i.e., song variants, which

would justify the use of a cluster analysis approach. A pair-

wise distance measure was calculated and represented as a

dendrogram to investigate grouping structure.

In the case of discrete variants, songs are expected to

group based on their acoustic characteristics. The acoustic

distances measured between songs belonging to the same

variant are expected to be smaller than distances to other

songs. On the other hand, in the absence of song variants, no

particular grouping of songs is expected and the acoustic dis-

tance is expected to vary continuously. A pairwise bioacous-

tic distance was calculated using dynamic time warping

(Ranjard et al., 2010). The resulting distance matrix was

represented on a dendrogram using a neighbor-joining

algorithm for a subset of 469 songs.

D. Song classification using ANN

The full dataset of songs was analyzed using a self-

organizing ANN classifier (Ranjard and Ross, 2008). This

algorithm aims at automatically identifying clusters of simi-

lar songs, removing the need for prior incorporation of infor-

mation about the number of clusters, i.e., the number of song

variants. The neural network is a type of growing SOM

(Kohonen, 1990), derived from the evolving tree SOM

(Pakkanen, 2004), which takes advantage of dynamic time

warping (Ranjard et al., 2010) to compute the weight matri-

ces (Krull et al., 2012) and calculate distances between the

weight matrices and the songs to be classified. The classifica-

tion is performed as a two-step process. First, the neural

network is constructed and, second, the songs are grouped

according to the resulting classification tree.

1. Network training

We implemented an evolving neural network classifier

as specified in Ranjard and Ross (2008). For completeness,

the full network specifications are included below. A set of

M songs, S, is classified using a network defined as a set of

connected weight matrices, Wt, at epoch, t. The neighbor-

hood function is

h Wt xð Þ; S yð Þ
� �

¼ a tð Þexp
�d Wt xð Þ; S yð Þ
� �2

2r tð Þ2

 !
; (1)

where dðWtðxÞ; SðyÞÞ is the dynamic time warping distance

between the neuron weight matrix, WtðxÞ, and the sample,

S(y). The learning rate aðtÞ is

a tð Þ ¼ max a 0ð Þexp
�t2

0:75Tð Þ2

 !
amin;

;

8><
>: (2)

where T is the total number of epochs for learning. In com-

parison to Ranjard and Ross (2008), we slightly modified the

neighborhood size function, rðtÞ, which is now modeled as a

Gaussian distribution, defined as

r tð Þ ¼ rmax exp
�t� T þ 1

2
2r2

sd

0
@

1
A
; (3)
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where rmax is the maximum value for the neighborhood size

function and rsd is the standard deviation. Consequently, the

neighborhood size function has a small value at the begin-

ning of the learning process when the network is small and

growing, larger values when the network self-organizes, and

then small values toward the end, allowing the fine-tuning of

the neuron weight matrices (Fig. 1). The number of children,

or leaf number, is

n tþ 1ð Þ ¼ max n tð Þ � n tð Þ
T

nmin;

(
(4)

and therefore be set to decrease through the learning process.

The counter of each neuron is countðcðtþ 1ÞÞ ¼ c countðcðtÞÞ.
The weight decay, c, restricts the size of the tree; see Pakkanen

(2004) for details.

2. Classification into song variants

Once the network has been constructed and trained on a

given dataset, classification of the songs is performed using

the network weight matrices as cluster centroids, each repre-

senting different song variants. For each song, S(y), the best

matching neuron is found across the tips of the network at a

given depth, so that it minimizes dðSðyÞ;WpÞ, where Wp is

the set of weight matrices in the tree at depth, p. Figure 2

illustrates the learning and classification processes of the net-

work. A MATLAB (MathWorks, Natick, MA) library for this

implementation, dtwave cluster, is available.1

E. Classification evaluation

The accuracy and precision of the automatic neural

network classification were assessed using the repertoire of a

single individual. The song repertoire (20 song recordings;

Fig. 3) was classified into song variants by experts (LR,

SJW, and HR) using spectrogram shapes and audio record-

ings. These three expert classifications were compared to

repeated automatic classifications obtained with the ANN

and to multiple random classifications of these 20 songs.

Neural network classification is not deterministic (Ranjard

and Ross, 2008), therefore, 100 ANN classification replicates

were computed using the parameters listed in Table I to

investigate consistency. A total of 100 random classifications

were constructed by randomly assigning songs to n clusters,

with n ¼ Nð9; 4Þ. The Rand index, RI (Rand, 1971), and

Jaccard index, JI (Jaccard, 1908), were calculated to assess

agreement both within and between the experts, neural net-

work, and random classifications. When comparing classifi-

cation C1 to classification C2, these indexes are defined as

JI ¼ a=ðaþ bþ cÞ and RI ¼ ðaþ dÞ=ðaþ bþ cþ dÞ, with

a: number of pairs of songs classified together in both C1

and C2, b: number of pairs of songs classified together in C1,

but not in C2, c: number of pairs of songs classified together

in C2, but not in C1, and d: number of pairs of songs that are

not classified together in either C1 nor C2.

The JI does not take into account the number of pairs, d,

that are separated in both classifications. Both indexes are

defined from 0 to 1, with high value indicating high similar-

ity between two classifications.

F. Correlation between geographic distance and song
repertoires

The full dataset of 1879 songs was classified into song

variants using the ANN classifier, constructed using the pa-

rameter values listed in Table II. A total of 100 classification

replicates were completed to take into account the variation

in the clustering signal of the song acoustic parameters. For

each replicate, the classification tree rules are potentially

defined according to different features of the extracted

acoustic parameters.

Different levels of classification, i.e., different numbers

of clusters, can be defined by selecting different depths in

the evolving tree. For each level, the number of clusters and

the intra-cluster distance were calculated (see Fig. 4 for an

example on a single classification). With large depth values,

high numbers of clusters are defined and the mean intra-

cluster distance is low, showing high similarity between

songs grouped in the same cluster. However, the resulting

classification may be poor when distinct cluster centroids are

too similar, as shown by high values for the Davies–Bouldin

clustering index (Davies, 1979). A depth of 4 in all classifi-

cations was selected to minimize this index, as well as the

number of clusters and the mean largest intra-cluster distan-

ces. Finally, the repertoire of each bird was defined as the set

of song variants that it sang.

To determine whether micro-geographic patterns of

song sharing were present on Tiritiri Matangi, we evaluated

the proportion of shared song variants between territories by

calculating the Jaccard distance between every pair of terri-

tories. This generated a territory song content pairwise dis-

tance matrix (30� 30) that could be compared to the

geographic distance between the territories. The Pearson

product-moment correlation coefficient was calculated for

each classification replicate, allowing us to obtain an esti-

mated distribution for the correlation between geographic

and repertoire distances.

FIG. 1. Learning weight in the neural network during a 50 epochs learning

process with a neighborhood strength function modeled as a Gaussian for

different distances from the best matching unit in the network.
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III. RESULTS

The neighbor-joining tree representing the pairwise dis-

tances measured between the subset of 469 songs shows

songs grouping into independent clusters (Fig. 5). The bioa-

coustic dynamic time warping distance between these songs

is, therefore, not continuously distributed and indicates that

smaller distances were obtained between songs belonging to

the same cluster. Several clusters of songs were identified in

the tree for which the spectrogram shapes appear visually

consistent (Fig. 5). However, the relationships between these

clusters are not precisely defined, with each being placed at

approximately the same distance from all the other clusters.

The highest clustering similarities were reported

between replicates of the neural network classifications

(JI ¼ 0:382; RI ¼ 0:927), which demonstrates high consis-

tency within these automatic classifications (Fig. 6). The

lowest agreement was found within random classifications

and between random and other classifications. Agreement

between expert and neural network classifications was rela-

tively high (JI ¼ 0:314; RI ¼ 0:888) and higher on average

than within expert classifications (JI ¼ 0:285; RI ¼ 0:860).

Although fewer expert classifications was performed, the

95% interval range of the index values, ½0:816; 0:905� for RI,

shows that low agreement can be observed between experts

at a level that is not found in the 100 neural networks repli-

cated classifications, 95% interval is ½0:884; 0:968�.
However, the interval of value for each index is large, e.g.,

½0:155; 0:578� for JI, but consistently higher than values

obtained against the random classifications (½0:000; 0:155�).
The automatic neural network classifications of the total

dataset resulted in 16 clusters, which were used to define 16

different song variants. On average, each male has a reper-

toire containing 9.1 song variants. The distribution of the

correlation coefficient between the geographic distance and

the Jaccard distance shows a low level of positive correlation

(Fig. 7) with the mean equal to 0.11.

FIG. 2. (Color online) General framework for one automatic song classification using the evolving tree ANN. First, the network is trained on the whole set of

songs, S, then classification is performed to define song variants. (A) Training: At each epoch, all samples from S are chosen once in a random order, encoded

as a time sequence of MFCC and PLP coefficients. For each sample, the best matching tip in the classification tree is found by starting from the root of the tree

and going down through each level. A dynamic time warping (DTW) algorithm provides a distance between the sample and the two weight matrices, W, at the

current level in the tree, determining the next level to be tested. Once a tip is reached, the weight matrices, Wt, are updated applying the Kohonen learning

rule. In the illustrated example, the classification tree contains five nodes at epoch t. When the song S(3) is chosen, dðSð3Þ;Wtð3ÞÞ < dðSð3Þ;Wtð2ÞÞ and the

next levels to test are therefore Wtð4Þ and Wtð5Þ. If dðSð3Þ;Wtð5ÞÞ < dðSð3Þ;Wtð4ÞÞ and countðWtð5ÞÞ is greater than a predefined splitting threshold, then the

tree is extended by subdividing the node, Wtð5Þ, with two new daughter nodes and weight matrices. (B) Classification: After training, a tree depth is selected

and each tip of the network at this depth represents a song variant. Each song from S is classified by using DTW to find the closest weight matrix and define

the song variant. In the example, depth 4 is selected at which 12 song variants can possibly be described. Note that some of the tips of the tree may not be

attributed to any song, resulting in a smaller number of variants than the total number of tips.
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IV. DISCUSSION

Only a limited number of bioacoustic studies (Stoddard

et al., 1988; Podos et al., 1992; Searcy et al., 1995; Deecke

and Janik, 2006; Gamba and Giacoma, 2007; Green et al.,
2011) test for the presence and the biological relevance of

categories in animal vocalizations (Searcy et al., 1999).

However, such investigation is necessary before forming

hypotheses regarding the biological meaning of these pat-

terns (Hauser, 1997). Our results demonstrate the presence

of distinct song variants in the male repertoires of the Tiritiri

Matangi Island hihi population. While the methodological

approach used to identify these variants is of primary

importance, no positive controls are available to assess its

accuracy as the song clusters perceived by the birds and,

therefore, of biological relevance, remain unknown.

Consequently, in order to identify song clusters, we compare

automatic and human-based clustering methods by assessing

their consistency and agreement against randomly structured

classifications. We define an ANN approach that is consist-

ent and can reproduce part of the variation found in human

expert classifications offering a way to overcome limitations

of human-based analyses. The ANN song classification

shows that the constitutive elements of the male repertoires,

defined as their spectro-temporal representations, can be

shared across individuals. These variants are distinguishable

on the basis of their time-frequency parameters as defined by

MFCC and PLP coefficients, although our approach can be

applied to other sound features. The dynamic time warping

distance, which measures subtle changes in the frequency

distribution of the songs, is able to efficiently quantify the

differences across variants.

Both the detection and classification of song variants are

automatically performed. The combination of MFCC coeffi-

cients with an HMM model provides an accurate approach

FIG. 3. Song repertoire of a single male used for classification tests. Songs

are not ordered in any particular way. Spectrograms range from 0 to

22 050 Hz (fast Fourier transform, 256 bands; window, Gaussian 50% over-

lap; frequency resolution, 86 Hz; temporal resolution, 5 ms).

TABLE I. ANN parameter values used for the automatic classification of

songs for classification evaluation.

Parameter Value

Number of epochs 5

Splitting threshold 2

Neighborhood strength maximum 4

Neighborhood strength standard deviation 2

Initial leaf number 2

Final leaf number 2

Gamma 0.95

Initial learning rate 0.90

Final learning rate 0.01

TABLE II. ANN parameter values used for the automatic classification of

songs (full dataset).

Parameter Value

Number of epochs 15

Splitting threshold 94

Neighborhood strength maximum 4

Neighborhood strength standard deviation 2

Initial leaf number 2

Final leaf number 2

Gamma 0.95

Initial learning rate 0.90

Final learning rate 0.01
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for extracting hihi calls from field recordings. In the present

study, the detector allows us to successfully isolate hihi

vocalizations from background noise and other species calls

that are potentially produced at high energy. Additionally,

manual removal is carried out to ensure high quality of the

song dataset. During this process, (i) songs with overlapping

bioacoustic signal or background noise and (ii) other types

of hihi calls are discarded. To limit further the manual selec-

tion of extracted songs, a HMM specific to each hihi call

type could be added to the recognizer. Recent results suggest

that bandpass filtering prior to song encoding (Potamitis

et al., 2014) and the use of general acoustic features that

incorporate animal perceptual information (Clemins and

Johnson, 2006; Bastas et al., 2012) may improve the detec-

tion accuracy. Furthermore, identifying, e.g., through labora-

tory experiments (Dooling et al., 2002), and focusing only

on the acoustic parameters to which birds are the most sensi-

tive could enhance the detection accuracy. Similarly, such

sound features could also be used to improve the song classi-

fication procedure.

We present an automatic clustering approach to perform

song variant classification when only limited prior knowl-

edge is available. As opposed to individual identification or

species recognition problems, no dataset can be referenced

to act as a classification control. In this case, unless the var-

iants can be associated to a specific behavioral context, e.g.,

flight calls (Keen et al., 2014), or convey an observable

information, e.g., social categories (Wanker and Fischer,

2013), it is not possible to assess classification accuracy

against a known “true” classification. Consequently, a classi-

fier error rate cannot be estimated. Therefore, we focus on

consistency across classification replicates, as well as agree-

ment between human and automatic classifiers to evaluate

classifiers. We report relatively low agreement between

human expert classifications on the test dataset. Therefore,

there is a level of uncertainty in the grouping of the songs

preventing the use of a single benchmark expert classifica-

tion to (i) optimize the song variant classifier (Trawicki

et al., 2005; Tao et al., 2008) and (ii) select the best acoustic

parameters using, for example, a feature generation approach

(Giret et al., 2011). We, therefore, define an unsupervised

FIG. 5. Neighbor-joining dendrogram showing the pairwise song distances
obtained from encoded spectrogram alignments of a subset of 469 songs.
Using visual inspection, a vertical line was drawn beside clusters of spectro-
gram displaying similar shape. An arbitrarily chosen representative spectro-
gram is shown on the right of each cluster (range from 0 to 22 050 Hz; fast
Fourier transform, 256 bands; window, Hamming 50% overlap; frequency
resolution, 86 Hz; temporal resolution, 5 ms).

FIG. 4. (Color online) Mean largest intra-cluster distance decreases with the

depth in the classification tree during the learning process. The Davies-

Bouldin clustering index is also indicated.
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ANN algorithm to determine the number, as well as the com-

position of the song clusters. This ANN relies on a measure

of bioacoustic distance that is in agreement with most avail-

able methods (Ranjard et al., 2010) and is therefore suitable

for exploratory analyses. A previous study that applied ANN

algorithms demonstrated that supervised ANNs and LDA

perform equally well in classifying black-capped chickadee

call note types (Dawson et al., 2006) and ANNs can, in

some cases, outperform LDA (Mielke and Zuberb€uhler,

2013). Our results show that an unsupervised ANN algo-

rithm, which does not require an informed training stage,

can also be used to efficiently classify songs. The network

self-organizes on the dataset using nonlinear relationships

between acoustical parameters to uncover high-

dimensionality structure, i.e., song variant clusters.

Several factors may explain the disagreement measured

between human-based classifiers. Experts potentially pay

attention to different visual and auditory features of the song

recordings and spectrograms. Variability can also occur

throughout the process of classification (Jones et al., 2001).

Such results could be produced in the presence of a subset of

songs with a high level of similarities or dissimilarities and

another set of songs more homogeneous. Experts would con-

sistently classify the first set in the same way. However, the

classification of the second set would diverge across expert

classifications. Overall, these results illustrate the difficulty

in classifying hihi male songs. Because our classification

algorithm is fully automatic, it provides a tool to easily gen-

erate multiple classifications. We use such an approach in an

attempt to integrate over the variation in the song variant

clustering illustrated by the conflicting expert classifications.

Variation between automatic ANN classifications can arise

when conflicting signals of similarity are present in the dis-

tinct sound parameters used for the song encoding. While

some parameters may be relevant to the species under study,

others may not or could be generated by background noise.

Integrating over a distribution of song classifications, instead

of a unique or a limited number of expert-generated classifi-

cations, offers the possibility to take classification uncer-

tainty into account in bioacoustic studies. More robust

analyses will result from such an approach while gaining

confidence in the results.

A remaining question is to understand the evolutionary

or the behavioral causes explaining such song variation. In

birds, vocal communication variation within a population can

have a variety of functional significances (Catchpole and

Slater, 2008). A diversity of messages usually related to mate

attraction and territorial defense can be conveyed (Kroodsma

and Byers, 1991). Low level of correlation was reported

between geographic distance and territory song variant reper-

toires. Such results may be purely due to chance, although

geographic song variation may be present, but difficult to

detect because of the small size of the island and a limited

sample size. Most of the territory is indeed located in close

proximity from each other on the island. Several hypotheses

can be advanced to explain patterns of geographic song varia-

tion (Podos and Warren, 2007). For example, geographic

FIG. 7. Distribution of the Pearson correlation coefficient between repertoire

and geographic distances obtained with 100 classification replicates of the

1879 songs dataset.

FIG. 6. (Color online) Distribution of the JIs and RIs. Three human expert

classifications and 100 random and ANN (NNet.) classifications are com-

pared. Boxes represent the 25th and 75th percentiles with median. The 100

replicates of automatic classifications are highly similar and more similar to

expert classifications than expected by chance.
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song variation can be the consequence of a biased dispersal

behavior. Alternatively, the Tiritiri Matangi Island population

could be at the initial stage of micro-geographic song varia-

tion, potentially leading to the development of geographic

dialects because of specific learning patterns. The pattern of

variation could also be directly related to the genetic diversity

of the bird population with genetically related individuals

acquiring proximate territories. Therefore, the study of

genetic relatedness and dispersal behavior is required in this

species to fully understand the causes responsible for the

observed pattern of song variation.

V. CONCLUSION

We applied an automatic methodology for bird song

detection and classification. High consistency is reported

between song classifications generated automatically. While

human expert classifications show some level of disagree-

ment, they present higher clustering similarity with automatic

song classification than random classifications. We, therefore,

demonstrate that laborious visual or acoustic inspection of

song recordings and spectrograms could be substituted by

computational statistical learning programs. Moreover, our

approach potentially offers a means to analyze a large

amount of data generated by recent high throughput field re-

cording technologies. Finally, we argue that integrating over

classification replicates should be performed in order to

account for song clustering uncertainty. Robust analysis is

then made possible by studying the distribution of a statistic

of interest rather than a single estimated value.
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