1,548 research outputs found

    Equilibrium vortex formation in ultrarapidly rotating two-component Bose-Einstein condensates

    Full text link
    Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numerical scheme is applied to ensure the binary system being in an authentic equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical rotating frequency \Omega_c is derived, which characterizes the structure with or without a central density hole. Vortex structures are studied in detail with rotation frequency both above and below ?\Omega_c and with respect to the miscible, symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.Comment: 7 pages, 7 figure

    Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

    Get PDF
    Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure

    Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Get PDF
    Two inverting second-generation current conveyors (ICCII) based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors

    Bending-wave Instability of a Vortex Ring in a Trapped Bose-Einstein Condensate

    Full text link
    Based on a velocity formula derived by matched asymptotic expansion, we investigate the dynamics of a circular vortex ring in an axisymmetric Bose-Einstein condensate in the Thomas-Fermi limit. The trajectory for an axisymmetrically placed and oriented vortex ring is entirely determined, revealing that the vortex ring generally precesses in condensate. The linear instability due to bending waves is investigated both numerically and analytically. General stability boundaries for various perturbed wavenumbers are computed. In particular, the excitation spectrum and the absolutely stable region for the static ring are analytically determined.Comment: 4 pages, 4 figure

    Stationary wave patterns generated by an impurity moving with supersonic velocity through a Bose-Einstein condensate

    Get PDF
    Formation of stationary 3D wave patterns generated by a small point-like impurity moving through a Bose-Einstein condensate with supersonic velocity is studied. Asymptotic formulae for a stationary far-field density distribution are obtained. Comparison with three-dimensional numerical simulations demonstrates that these formulae are accurate enough already at distances from the obstacle equal to a few wavelengths.Comment: 7 pages, 3 figure

    Performance Evaluation of a Database of Repetitive Elements in Complete Genomes

    Get PDF
    [[abstract]]The analysis of repetitive elements reveals repetitive elements in our genome may have been very important in the evolutionary genomics. In this work, we propose approaches to improve the performance of the repetitive elements in a database, namely Repetitive Sequence Database (RSDB). There are hundreds of millions of repetitive elements in RSDB. Performance evaluation and tuning are critical for us to manage such a large database. Not only does this study have a lot of performance improvements on centralized RSDB, but also this study provides a comparison of performance between centralized RSDB and distributed RSDB. From the experimental results, we find the improvements proposed speed up our RSDB very much

    Mining putative Regulatory Elements in promoter Regions of Saccharomyces cerevisiae

    Get PDF
    [[abstract]]The availability of genome-wide gene expression data provides a unique set of genes from which we can decipher the mechanisms underlying the common transcriptional response. Transcription factors, which can bind to specific DNA sites, cooperatively regulate the transcription of genes. This study attempts to mine putative binding sites to investigate how combinations of the sites predicted from known sites and overrepresented repetitive elements are distributed in the promoter regions of groups of functionally related genes. The over-represented repetitive elements appearing in the associations are possible transcription factor binding sites. The deduced association rules would facilitate to predict putative regulatory elements and to identify genes which are potentially co-regulated by the putative regulatory elements. Our proposed approach is applied to Saccharomyces cerevisiae and the promoter regions of yeast ORFs

    Computing motif correlations in proteins

    Get PDF
    [[abstract]]Protein motifs, which are specific regions and conserved regions, are found by comparing multiple protein sequences. These conserved regions in general play an important role in protein functions and protein folds, for example, for their binding properties or enzymatic activities. The aim here is to find the existence correlations of protein motifs. The knowledge of protein motif/domain sharing should be important in shedding new light on the biologic functions of proteins and offering a basis in analyzing the evolution in the human genome or other genomes. The protein sequences used here are obtained from the PIR-NREF database and the protein motifs are retrieved from the PROSITE database. We apply data mining approach to discover the occurrence correlations of motif in protein sequences. The correlation of motifs mined can be used in evolution analyses and protein structure prediction. We discuss the latter, i.e., protein structure prediction in this study. The correlations mined are stored and maintained in a database system. The database is now available at http://bioinfo.csie.ncu.edu.tw/ProMotif/. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 2032-2043, 200

    Identifying the combination of genetic factors that determine susceptibility to cervical cancer

    Get PDF
    [[abstract]]Cervical cancer is common among women all over the world. Although infection with high-risk types of human papillomavirus (HPV) has been identified as the primary cause of cervical cancer, only some of those infected go on to develop cervical cancer. Obviously, the progression from HPV infection to cancer involves other environmental and host factors. Recent populationbased twin and family studies have demonstrated the importance of the hereditary component of cervical cancer, associated with genetic susceptibility. Consequently, single-nucleotide polymorphism (SNP) markers and microsatellites should be considered genetic factors for determining what combinations of genetic factors are involved in precancerous changes to cervical cancer. This study employs a Bayesian network and four different decision tree algorithms, and compares the performance of these learning algorithms. The results of this study raise the possibility of investigations that could identify combinations of genetic factors, such as SNPs and microsatellites, that influence the risk associated with common complex multifactorial diseases, such as cervical cancer. The web site associated with this study is http://140.115.155.8/FactorAnalysis/
    corecore