1,806 research outputs found
Electronic prototyping
The potential benefits of automation in space are significant. The science base needed to support this automation not only will help control costs and reduce lead-time in the earth-based design and construction of space stations, but also will advance the nation's capability for computer design, simulation, testing, and debugging of sophisticated objects electronically. Progress in automation will require the ability to electronically represent, reason about, and manipulate objects. Discussed here is the development of representations, languages, editors, and model-driven simulation systems to support electronic prototyping. In particular, it identifies areas where basic research is needed before further progress can be made
Patterns theory and geodesic automatic structure for a class of groups
We introduce a theory of "patterns" in order to study geodesics in a certain
class of group presentations. Using patterns we show that there does not exist
a geodesic automatic structure for certain group presentations, and that
certain group presentations are almost convex.Comment: Appeared in 2003. I am putting all my past papers on arxi
Subalgebras of FA-presentable algebras
Automatic presentations, also called FA-presentations, were introduced to
extend finite model theory to infinite structures whilst retaining the
solubility of fundamental decision problems. This paper studies FA-presentable
algebras. First, an example is given to show that the class of finitely
generated FA-presentable algebras is not closed under forming finitely
generated subalgebras, even within the class of algebras with only unary
operations. However, it is proven that a finitely generated subalgebra of an
FA-presentable algebra with a single unary operation is itself FA-presentable.
Furthermore, it is proven that the class of unary FA-presentable algebras is
closed under forming finitely generated subalgebras, and that the membership
problem for such subalgebras is decidable.Comment: 19 pages, 6 figure
Invisible pushdown languages
Context free languages allow one to express data with hierarchical structure,
at the cost of losing some of the useful properties of languages recognized by
finite automata on words. However, it is possible to restore some of these
properties by making the structure of the tree visible, such as is done by
visibly pushdown languages, or finite automata on trees. In this paper, we show
that the structure given by such approaches remains invisible when it is read
by a finite automaton (on word). In particular, we show that separability with
a regular language is undecidable for visibly pushdown languages, just as it is
undecidable for general context free languages
Maintenance of Strongly Connected Component in Shared-memory Graph
In this paper, we present an on-line fully dynamic algorithm for maintaining
strongly connected component of a directed graph in a shared memory
architecture. The edges and vertices are added or deleted concurrently by fixed
number of threads. To the best of our knowledge, this is the first work to
propose using linearizable concurrent directed graph and is build using both
ordered and unordered list-based set. We provide an empirical comparison
against sequential and coarse-grained. The results show our algorithm's
throughput is increased between 3 to 6x depending on different workload
distributions and applications. We believe that there are huge applications in
the on-line graph. Finally, we show how the algorithm can be extended to
community detection in on-line graph.Comment: 29 pages, 4 figures, Accepted in the Conference NETYS-201
The Gremlin Graph Traversal Machine and Language
Gremlin is a graph traversal machine and language designed, developed, and
distributed by the Apache TinkerPop project. Gremlin, as a graph traversal
machine, is composed of three interacting components: a graph , a traversal
, and a set of traversers . The traversers move about the graph
according to the instructions specified in the traversal, where the result of
the computation is the ultimate locations of all halted traversers. A Gremlin
machine can be executed over any supporting graph computing system such as an
OLTP graph database and/or an OLAP graph processor. Gremlin, as a graph
traversal language, is a functional language implemented in the user's native
programming language and is used to define the of a Gremlin machine.
This article provides a mathematical description of Gremlin and details its
automaton and functional properties. These properties enable Gremlin to
naturally support imperative and declarative querying, host language
agnosticism, user-defined domain specific languages, an extensible
compiler/optimizer, single- and multi-machine execution models, hybrid depth-
and breadth-first evaluation, as well as the existence of a Universal Gremlin
Machine and its respective entailments.Comment: To appear in the Proceedings of the 2015 ACM Database Programming
Languages Conferenc
Rewriting systems and biautomatic structures for Chinese, hypoplactic, and sylvester monoids
This paper studies complete rewriting systems and biautomaticity for three interesting classes of finite-rank homogeneous monoids: Chinese monoids, hypoplactic monoids, and sylvester monoids. For Chinese monoids, we first give new presentations via finite complete rewriting systems, using more lucid constructions and proofs than those given independently by Chen & Qui and Güzel Karpuz; we then construct biautomatic structures. For hypoplactic monoids, we construct finite complete rewriting systems and biautomatic structures. For sylvester monoids, which are not finitely presented, we prove that the standard presentation is an infinite complete rewriting system, and construct biautomatic structures. Consequently, the monoid algebras corresponding to monoids of these classes are automaton algebras in the sense of Ufnarovskij
Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs
Pebble games are single-player games on DAGs involving placing and moving
pebbles on nodes of the graph according to a certain set of rules. The goal is
to pebble a set of target nodes using a minimum number of pebbles. In this
paper, we present a possibly simpler proof of the result in [CLNV15] and
strengthen the result to show that it is PSPACE-hard to determine the minimum
number of pebbles to an additive term for all , which improves upon the currently known additive constant hardness of
approximation [CLNV15] in the standard pebble game. We also introduce a family
of explicit, constant indegree graphs with nodes where there exists a graph
in the family such that using constant pebbles requires moves
to pebble in both the standard and black-white pebble games. This independently
answers an open question summarized in [Nor15] of whether a family of DAGs
exists that meets the upper bound of moves using constant pebbles
with a different construction than that presented in [AdRNV17].Comment: Preliminary version in WADS 201
Testing the Equivalence of Regular Languages
The minimal deterministic finite automaton is generally used to determine
regular languages equality. Antimirov and Mosses proposed a rewrite system for
deciding regular expressions equivalence of which Almeida et al. presented an
improved variant. Hopcroft and Karp proposed an almost linear algorithm for
testing the equivalence of two deterministic finite automata that avoids
minimisation. In this paper we improve the best-case running time, present an
extension of this algorithm to non-deterministic finite automata, and establish
a relationship between this algorithm and the one proposed in Almeida et al. We
also present some experimental comparative results. All these algorithms are
closely related with the recent coalgebraic approach to automata proposed by
Rutten
k-Color Multi-Robot Motion Planning
We present a simple and natural extension of the multi-robot motion planning
problem where the robots are partitioned into groups (colors), such that in
each group the robots are interchangeable. Every robot is no longer required to
move to a specific target, but rather to some target placement that is assigned
to its group. We call this problem k-color multi-robot motion planning and
provide a sampling-based algorithm specifically designed for solving it. At the
heart of the algorithm is a novel technique where the k-color problem is
reduced to several discrete multi-robot motion planning problems. These
reductions amplify basic samples into massive collections of free placements
and paths for the robots. We demonstrate the performance of the algorithm by an
implementation for the case of disc robots and polygonal robots translating in
the plane. We show that the algorithm successfully and efficiently copes with a
variety of challenging scenarios, involving many robots, while a simplified
version of this algorithm, that can be viewed as an extension of a prevalent
sampling-based algorithm for the k-color case, fails even on simple scenarios.
Interestingly, our algorithm outperforms a well established implementation of
PRM for the standard multi-robot problem, in which each robot has a distinct
color.Comment: 2
- …