913 research outputs found
Multiscale non-adiabatic dynamics with radiative decay, case study on the post-ionization fragmentation of rare-gas tetramers
In this supplementary material, we recollect, for reader's convenience, the
general scheme of suggested multiscale model (Sec. 1), and basic informations
about approaches used for pilot study: a detailed description of the
interaction model (Sec. 2) and dynamical methods used for the dark dynamics
step (Sec. 3) reported previously in two preceding studies [1, 2]. In addition,
a detailed description of the treatment of radiative processes is also given
(Sec. 4).Comment: supplementary material for parent paper; 9 pages, 1 figure; corrected
formulae and misleading notation in Sec.4 (pages 7 and 8
New Green-Kubo formulas for transport coefficients in hard sphere-, Langevin fluids and the likes
We present generalized Green-Kubo expressions for thermal transport
coefficients in non-conservative fluid-type systems, of the generic form,
+\int^\infty_0 dt V^{-1} \av{I_\epsilon \exp(t {\cal L})
I}_0 where is a pseudo-streaming operator. It consists of a
sum of an instantaneous transport coefficient , and a time integral
over a time correlation function in a state of thermal equilibrium between a
current and its conjugate current . This formula with
and covers vastly different systems,
such as strongly repulsive elastic interactions in hard sphere fluids, weakly
interacting Langevin fluids with dissipative and stochastic interactions
satisfying detailed balance conditions, and "the likes", defined in the text.
For conservative systems the results reduce to the standard formulas.Comment: 7 pages, no figures. Version 2: changes in the text and references
adde
Consistent particle-based algorithm with a non-ideal equation of state
A thermodynamically consistent particle-based model for fluid dynamics with
continuous velocities and a non-ideal equation of state is presented. Excluded
volume interactions are modeled by means of biased stochastic multiparticle
collisions which depend on the local velocities and densities. Momentum and
energy are exactly conserved locally. The equation of state is derived and
compared to independent measurements of the pressure. Results for the kinematic
shear viscosity and self-diffusion constants are presented. A caging and
order/disorder transition is observed at high densities and large collision
frequency.Comment: 7 pages including 4 figure
Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology
For optimal processing and design of entangled polymeric materials it is
important to establish a rigorous link between the detailed molecular
composition of the polymer and the viscoelastic properties of the macroscopic
melt. We review current and past computer simulation techniques and critically
assess their ability to provide such a link between chemistry and rheology. We
distinguish between two classes of coarse-graining levels, which we term
coarse-grained molecular dynamics (CGMD) and coarse-grained stochastic dynamics
(CGSD). In CGMD the coarse-grained beads are still relatively hard, thus
automatically preventing bond crossing. This also implies an upper limit on the
number of atoms that can be lumped together and therefore on the longest chain
lengths that can be studied. To reach a higher degree of coarse-graining, in
CGSD many more atoms are lumped together, leading to relatively soft beads. In
that case friction and stochastic forces dominate the interactions, and actions
must be undertaken to prevent bond crossing. We also review alternative methods
that make use of the tube model of polymer dynamics, by obtaining the
entanglement characteristics through a primitive path analysis and by
simulation of a primitive chain network. We finally review super-coarse-grained
methods in which an entire polymer is represented by a single particle, and
comment on ways to include memory effects and transient forces.Comment: Topical review, 31 pages, 10 figure
Recognition of genetic predisposition in pediatric cancer patients: An easy-to-use selection tool
Genetic predisposition for childhood cancer is under diagnosed. Identifying these patients may lead to therapy adjustments in case of syndrome-related increased toxicity or resistant disease and syndrome-specific screening programs may lead to early detection of a further independent malignancy. Cancer surveillance might also be warranted for affected relatives and detection of a genetic mutation can allow for reproductive counseling.Here we present an easy-to-use selection tool, based on a systematic review of pediatric cancer predisposing syndromes, to identify patients who may benefit from genetic counseling. The selection tool involves five questions concerning family history, the type of malignancy, multiple primary malignancies, specific features and excessive toxicity, which results in the selection of those patients that may benefit from referral to a clinical geneticist
Transport coefficients of multi-particle collision algorithms with velocity-dependent collision rules
Detailed calculations of the transport coefficients of a recently introduced
particle-based model for fluid dynamics with a non-ideal equation of state are
presented. Excluded volume interactions are modeled by means of biased
stochastic multiparticle collisions which depend on the local velocities and
densities. Momentum and energy are exactly conserved locally. A general scheme
to derive transport coefficients for such biased, velocity dependent collision
rules is developed. Analytic expressions for the self-diffusion coefficient and
the shear viscosity are obtained, and very good agreement is found with
numerical results at small and large mean free paths. The viscosity turns out
to be proportional to the square root of temperature, as in a real gas. In
addition, the theoretical framework is applied to a two-component version of
the model, and expressions for the viscosity and the difference in diffusion of
the two species are given.Comment: 31 pages, 8 figures, accepted by J. Phys. Cond. Matte
Capillary Rise in Nanopores: Molecular Dynamics Evidence for the Lucas-Washburn Equation
When a capillary is inserted into a liquid, the liquid will rapidly flow into
it. This phenomenon, well studied and understood on the macroscale, is
investigated by Molecular Dynamics simulations for coarse-grained models of
nanotubes. Both a simple Lennard-Jones fluid and a model for a polymer melt are
considered. In both cases after a transient period (of a few nanoseconds) the
meniscus rises according to a -law. For the polymer melt,
however, we find that the capillary flow exhibits a slip length ,
comparable in size with the nanotube radius . We show that a consistent
description of the imbibition process in nanotubes is only possible upon
modification of the Lucas-Washburn law which takes explicitly into account the
slip length .Comment: 4 pages 4 figure
Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures
A recently introduced particle-based model for fluid dynamics with continuous
velocities is generalized to model immiscible binary mixtures. Excluded volume
interactions between the two components are modeled by stochastic multiparticle
collisions which depend on the local velocities and densities. Momentum and
energy are conserved locally, and entropically driven phase separation occurs
for high collision rates. An explicit expression for the equation of state is
derived, and the concentration dependence of the bulk free energy is shown to
be the same as that of the Widom-Rowlinson model. Analytic results for the
phase diagram are in excellent agreement with simulation data. Results for the
line tension obtained from the analysis of the capillary wave spectrum of a
droplet agree with measurements based on the Laplace's equation. The
introduction of "amphiphilic" dimers makes it possible to model the phase
behavior and dynamics of ternary surfactant mixtures.Comment: 7 pages including 6 figure
Evolution of displacements and strains in sheared amorphous solids
The local deformation of two-dimensional Lennard-Jones glasses under imposed
shear strain is studied via computer simulations. Both the mean squared
displacement and mean squared strain rise linearly with the length of the
strain interval over which they are measured. However, the
increase in displacement does not represent single-particle diffusion. There
are long-range spatial correlations in displacement associated with slip lines
with an amplitude of order the particle size. Strong dependence on system size
is also observed. The probability distributions of displacement and strain are
very different. For small the distribution of displacement has
a plateau followed by an exponential tail. The distribution becomes Gaussian as
increases to about .03. The strain distributions consist of
sharp central peaks associated with elastic regions, and long exponential tails
associated with plastic regions. The latter persist to the largest studied.Comment: Submitted to J. Phys. Cond. Mat. special volume for PITP Conference
on Mechanical Behavior of Glassy Materials. 16 Pages, 8 figure
A reduced model for shock and detonation waves. I. The inert case
We present a model of mesoparticles, very much in the Dissipative Particle
Dynamics spirit, in which a molecule is replaced by a particle with an internal
thermodynamic degree of freedom (temperature or energy). The model is shown to
give quantitavely accurate results for the simulation of shock waves in a
crystalline polymer, and opens the way to a reduced model of detonation waves
- …