1,431 research outputs found

    Display/control requirements for VTOL aircraft

    Get PDF
    Quantative metrics were determined for system control performance, workload for control, monitoring performance, and workload for monitoring. Pilot tasks were allocated for navigation and guidance of automated commercial V/STOL aircraft in all weather conditions using an optimal control model of the human operator to determine display elements and design

    Thermal Kinetic Inductance Detectors for Millimeter-Wave Astrophysics

    Get PDF
    Thermal Kinetic Inductance Detectors (TKIDs) combine the excellent noise performance of traditional bolometers with a radio frequency (RF) multiplexing architecture that enables the large detector counts needed for the next generation of millimeter-wave instruments. Here we present dark prototype TKID pixels that demonstrate a noise equivalent power NEP = 2×10⁻¹⁷√W/Hz with a 1/f knee at 0.1 Hz, suitable for background-limited noise performance at 150 GHz from a ground-based site. We discuss the optimizations in the device design and fabrication techniques to realize optimal electrical performance and high quality factors at a bath temperature of 250 mK

    Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer

    Get PDF
    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100-200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R=282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-limited R=100 filter bank, appropriate for a line intensity mapping experiment targeting the [CII] 158 micron transition during the Epoch of ReionizationComment: 16 pages, 10 figures, Proceedings of the SPIE Astronomical Telescopes + Instrumentation 2014 Conference, Vol 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI

    Microwave Kinetic Inductance Detector (MKID) Camera Testing for Submillimeter Astronomy

    Get PDF
    Developing kilopixel focal planes for incoherent submm- and mm-wave detectors remains challenging due to either the large hardware overhead or the complexity of multiplexing standard detectors. Microwave kinetic inductance detectors (MKIDs) provide a efficient means to produce fully lithographic background-limited kilopixel focal planes. We are constructing an MKID-based camera for the Caltech Submillimeter Observatory with 576 spatial pixels each simultaneously sensitive in 4 bands at 230, 300, 350, and 400 GHz. The novelty of MKIDs has required us to develop new techniques for detector characterization. We have measured quasiparticle lifetimes and resonator Qs for detector bath temperatures between 200 mK and 400 mK. Equivalent lifetime measurements were made by coupling energy into the resonators either optically or by driving the third harmonic of the resonator. To determine optical loading, we use both lifetime and internal Q measurements, which range between 15,000 and 30,000 for our resonators. Spectral bandpass measurements confirm the placement of the 230 and 350 GHz bands. Additionally, beam maps measurements conform to expectations. The same device design has been characterized on both sapphire and silicon substrates, and for different detector geometries. We also report on the incorporation of new shielding to reduce detector sensitivity to local magnetic fields

    Thermal Kinetic Inductance Detectors for Millimeter-Wave Astrophysics

    Get PDF
    Thermal Kinetic Inductance Detectors (TKIDs) combine the excellent noise performance of traditional bolometers with a radio frequency (RF) multiplexing architecture that enables the large detector counts needed for the next generation of millimeter-wave instruments. Here we present dark prototype TKID pixels that demonstrate a noise equivalent power NEP = 2×10⁻¹⁷√W/Hz with a 1/f knee at 0.1 Hz, suitable for background-limited noise performance at 150 GHz from a ground-based site. We discuss the optimizations in the device design and fabrication techniques to realize optimal electrical performance and high quality factors at a bath temperature of 250 mK

    The institutional shaping of management: in the tracks of English individualism

    Get PDF
    Globalisation raises important questions about the shaping of economic action by cultural factors. This article explores the formation of what is seen by some as a prime influence on the formation of British management: individualism. Drawing on a range of historical sources, it argues for a comparative approach. In this case, the primary comparison drawn is between England and Scotland. The contention is that there is a systemic approach to authority in Scotland that can be contrasted to a personal approach in England. An examination of the careers of a number of Scottish pioneers of management suggests the roots of this systemic approach in practices of church governance. Ultimately this systemic approach was to take a secondary role to the personal approach engendered by institutions like the universities of Oxford and Cambridge, but it found more success in the different institutional context of the USA. The complexities of dealing with historical evidence are stressed, as is the value of taking a comparative approach. In this case this indicates a need to take religious practice as seriously as religious belief as a source of transferable practice. The article suggests that management should not be seen as a simple response to economic imperatives, but as shaped by the social and cultural context from which it emerges

    SuperSpec: development towards a full-scale filter bank

    Get PDF
    SuperSpec is a new spectrometer-on-a-chip technology for submm/mm-wave spectroscopy. SuperSpec stands out from other direct-detection submm spectrometer technologies in that the detectors are coupled to a series of resonant filters along a single microwave feedline instead of using dispersive optics. SuperSpec makes use of kinetic inductance detectors (KIDs) to detect radiation in this filter bank. The small profile of this design makes SuperSpec a natural choice to produce a multi-object spectrometer for tomographic mapping or galaxy redshift surveys. We have recently fabricated a device that is a 50 channel subset of a full 280 channel filter bank, which would cover the 190 - 310 GHz range at R = 275. Analysis of the data from this device informs us of the potential design modifications to enable a high-yield background-limited SuperSpec spectrometer. The results indicate that this subset filter bank can scale up to a full filter bank with only a few collisions in readout space and less than 20% variation in responsivity for the detectors. Additionally, the characterization of this and other prototype devices suggests that the noise performance is limited by generation-recombination noise. Finally, we find that the detectors are sufficiently sensitive for ground-based spectroscopy at R = 100, appropriate for tomographic mapping experiments. Further modifications are required to reach the background limit for R = 400, ideal for spectroscopy of individual galaxies

    Low Noise Titanium Nitride KIDs for SuperSpec: A Millimeter-Wave On-Chip Spectrometer

    Get PDF
    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R= 100–500), large bandwidth (∼1.65:1), submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector operating at 100–200 MHz. We have tested a new prototype device that achieves the targeted R=100R=100 resolving power, and has better detector sensitivity and optical efficiency than previous devices. We employ a new method for measuring photon noise using both coherent and thermal sources of radiation to cleanly separate the contributions of shot and wave noise. We report an upper limit to the detector NEP of 1.4×10^(−17) W Hz^(−1/2), within 10 % of the photon noise-limited NEP for a ground-based R=100R=100 spectrometer

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin
    corecore