768 research outputs found
Long-range adiabatic quantum state transfer through a linear array of quantum dots
We introduce an adiabatic long-range quantum communication proposal based on
a quantum dot array. By adiabatically varying the external gate voltage applied
on the system, the quantum information encoded in the electron can be
transported from one end dot to another. We numerically solve the Schr\"odinger
equation for a system with a given number of quantum dots. It is shown that
this scheme is a simple and efficient protocol to coherently manipulate the
population transfer under suitable gate pulses. The dependence of the energy
gap and the transfer time on system parameters is analyzed and shown
numerically. We also investigate the adiabatic passage in a more realistic
system in the presence of inevitable fabrication imperfections. This method
provides guidance for future realizations of adiabatic quantum state transfer
in experiments.Comment: 7 pages, 7 figure
Spatial mapping of band bending in semiconductor devices using in-situ quantum sensors
Band bending is a central concept in solid-state physics that arises from
local variations in charge distribution especially near semiconductor
interfaces and surfaces. Its precision measurement is vital in a variety of
contexts from the optimisation of field effect transistors to the engineering
of qubit devices with enhanced stability and coherence. Existing methods are
surface sensitive and are unable to probe band bending at depth from surface or
bulk charges related to crystal defects. Here we propose an in-situ method for
probing band bending in a semiconductor device by imaging an array of
atomic-sized quantum sensing defects to report on the local electric field. We
implement the concept using the nitrogen-vacancy centre in diamond, and map the
electric field at different depths under various surface terminations. We then
fabricate a two-terminal device based on the conductive two-dimensional hole
gas formed at a hydrogen-terminated diamond surface, and observe an unexpected
spatial modulation of the electric field attributed to a complex interplay
between charge injection and photo-ionisation effects. Our method opens the way
to three-dimensional mapping of band bending in diamond and other
semiconductors hosting suitable quantum sensors, combined with simultaneous
imaging of charge transport in complex operating devices.Comment: This is a pre-print of an article published in Nature Electronics.
The final authenticated version is available online at
https://dx.doi.org/10.1038/s41928-018-0130-
Scanning Quantum Decoherence Microscopy
The use of qubits as sensitive magnetometers has been studied theoretically
and recent demonstrated experimentally. In this paper we propose a
generalisation of this concept, where a scanning two-state quantum system is
used to probe the subtle effects of decoherence (as well as its surrounding
electromagnetic environment). Mapping both the Hamiltonian and decoherence
properties of a qubit simultaneously, provides a unique image of the magnetic
(or electric) field properties at the nanoscale. The resulting images are
sensitive to the temporal as well as spatial variation in the fields created by
the sample. As an example we theoretically study two applications of this
technology; one from condensed matter physics, the other biophysics. The
individual components required to realise the simplest version of this device
(characterisation and measurement of qubits, nanoscale positioning) have
already been demonstrated experimentally.Comment: 11 pages, 5 low quality (but arXiv friendly) image
Identifying an Experimental Two-State Hamiltonian to Arbitrary Accuracy
Precision control of a quantum system requires accurate determination of the
effective system Hamiltonian. We develop a method for estimating the
Hamiltonian parameters for some unknown two-state system and providing
uncertainty bounds on these parameters. This method requires only one
measurement basis and the ability to initialise the system in some arbitrary
state which is not an eigenstate of the Hamiltonian in question. The scaling of
the uncertainty is studied for large numbers of measurements and found to be
proportional to one on the square-root of the number of measurements.Comment: Minor corrections, Accepted for publication in Physical Review
Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells
We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an
emphasis on calculating the valley splitting. The theory introduces a valley
coupling parameter, , which encapsulates the physics of the quantum well
interface. The new effective mass parameter is computed by means of a tight
binding theory. The resulting formalism provides rather simple analytical
results for several geometries of interest, including a finite square well, a
quantum well in an electric field, and a modulation doped two-dimensional
electron gas. Of particular importance is the problem of a quantum well in a
magnetic field, grown on a miscut substrate. The latter may pose a numerical
challenge for atomistic techniques like tight-binding, because of its
two-dimensional nature. In the effective mass theory, however, the results are
straightforward and analytical. We compare our effective mass results with
those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR
Relation of amino acid transport to sodium-ion concentration
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31964/1/0000006.pd
- …