21,860 research outputs found

    Intensity dependence of Rydberg states

    Full text link
    We investigate numerically and analytically the intensity dependence of the fraction of electrons that end up in a Rydberg state after strong-field ionization with linearly polarized light. We find that including the intensity dependent distribution of ionization times and non-adiabatic effects leads to a better understanding of experimental results. Furthermore, we observe using Classical Trajectory Monte Carlo simulations that the intensity dependence of the Rydberg yield changes with wavelength and that the previously observed power-law dependence breaks down at longer wavelengths. Our work suggests that Rydberg yield measurements can be used as an independent test for non-adiabaticity in strong field ionization

    Many-body Theory at Extreme Isospin

    Get PDF
    The structure of nuclei far off beta-stability is investigated by nuclear many-body theory. In-medium interactions for asymmetric nuclear matter are obtained by (Dirac-) Brueckner theory thus establishing the link of nuclear forces to free space interactions. HFB and RPA theory is used to describe ground and excited states of nuclei from light to heavy masses. In extreme dripline systems pairing and core polarization are found to be most important for the binding, especially of halo nuclei. The calculations show that far off stability mean-field dynamics is gradually replaced by dynamical correlations, giving rise to the dissolution of shell structures.Comment: 10 pages, 5 figures, to appear in the proceedings of Nuclear Physics at the Borderline, NPBL2001, Lipari, Sicily, Italy, May 2001 (World Scientific

    Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments

    Full text link
    In this paper, we address the risk estimation problem where one aims at estimating the probability of violation of safety constraints for a robot in the presence of bounded uncertainties with arbitrary probability distributions. In this problem, an unsafe set is described by level sets of polynomials that is, in general, a non-convex set. Uncertainty arises due to the probabilistic parameters of the unsafe set and probabilistic states of the robot. To solve this problem, we use a moment-based representation of probability distributions. We describe upper and lower bounds of the risk in terms of a linear weighted sum of the moments. Weights are coefficients of a univariate Chebyshev polynomial obtained by solving a sum-of-squares optimization problem in the offline step. Hence, given a finite number of moments of probability distributions, risk can be estimated in real-time. We demonstrate the performance of the provided approach by solving probabilistic collision checking problems where we aim to find the probability of collision of a robot with a non-convex obstacle in the presence of probabilistic uncertainties in the location of the robot and size, location, and geometry of the obstacle.Comment: 57th IEEE Conference on Decision and Control 201

    Generation of highly non-classical n-photon polarization states by super-bunching at a photon bottleneck

    Get PDF
    It is shown that coherent superpositions of two oppositely polarized n-photon states can be created by post-selecting the transmission of n independently generated photons into a single mode transmission line. It is thus possible to generate highly non-classical n-photon polarization states using only the bunching effects associated with the bosonic nature of photons. The effects of mode-matching errors are discussed and the possibility of creating n-photon entanglement by redistributing the photons into n separate modes is considered.Comment: 8 pages, including 4 figures, extended version of the original letter paper, includes discussion of linear polarization statistic

    Microscopic Model versus Systematic Low-Energy Effective Field Theory for a Doped Quantum Ferromagnet

    Full text link
    We consider a microscopic model for a doped quantum ferromagnet as a test case for the systematic low-energy effective field theory for magnons and holes, which is constructed in complete analogy to the case of quantum antiferromagnets. In contrast to antiferromagnets, for which the effective field theory approach can be tested only numerically, in the ferromagnetic case both the microscopic and the effective theory can be solved analytically. In this way the low-energy parameters of the effective theory are determined exactly by matching to the underlying microscopic model. The low-energy behavior at half-filling as well as in the single- and two-hole sectors is described exactly by the systematic low-energy effective field theory. In particular, for weakly bound two-hole states the effective field theory even works beyond perturbation theory. This lends strong support to the quantitative success of the systematic low-energy effective field theory method not only in the ferromagnetic but also in the physically most interesting antiferromagnetic case.Comment: 34 pages, 1 figur

    Triggering of Imaging Air Cherenkov Telescopes: PMT trigger rates due to night-sky photons

    Get PDF
    Imaging air Cherenkov telescopes are usually triggered on a coincidence of two or sometimes more pixels, with discriminator thresholds in excess of 20 photoelectrons applied for each pixel. These thresholds required to suppress night-sky background are significantly higher than expected on the basis of a Poisson distribution in the number of night-sky photoelectrons generated during the characteristic signal integration time. We studied noise trigger rates under controlled conditions using an artificial background light source. Large tails in the PMT amplitude response to single photoelectrons are identified as a dominant contribution to noise triggers. The rate of such events is very sensitive to PMT operating parameters.Comment: 19 pages, latex,epsf, 7 figures appended as uuencoded file, submitted to Journal of Physics

    Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

    Get PDF
    The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semisolid processing is used to optimize the volume fraction, morphology, and size of second-phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of ≈2 ÎŒm, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude, making these “designed” composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems

    Personality traits in resident and migratory warbler species.

    Get PDF
    Animals are often confronted with environmental challenges and the way in which they cope with these challenges can have important fitness consequences. There is increasing evidence that individuals differ consistently in their reaction to the environment (personality traits). However, little is known about whether different life-styles (e.g., resident or migratory) influence personality traits and if so, in what manner. We compared neophobic and exploratory behaviours, both of which play an important role in personality traits, between two closely related species, the resident Sardinian warblers and the migratory garden warblers, at two different times during the year. Neophobia was tested by placing a novel object, a mop, beside the feeding dish and measuring the latency to feed (neophobia score). Exploration was tested by offering another novel object, a tube, attached to a perch at a neutral location and measuring latency to approach and investigate the tube (exploration score). Both tests were carried out at the end of the breeding season and repeated ten months later in spring. The Sardinian warblers showed consistent behavioural reactions over time. Furthermore, neophobia and exploration scores were negatively related. The garden warblers neither behaved consistently over time nor was there a correlation between neophobia and exploration. Overall, Sardinian warblers were less neophobic and more explorative than garden warblers. The different reactivity may be due to a different frequency distribution of the individuals of the two species along a reactivity axis. It can be concluded that the Sardinian warblers have personality traits. The situation is less clear in the garden warblers. Possibly, different life-styles require different organisation of behaviours

    Complex joint probabilities as expressions of determinism in quantum mechanics

    Get PDF
    The density operator of a quantum state can be represented as a complex joint probability of any two observables whose eigenstates have non-zero mutual overlap. Transformations to a new basis set are then expressed in terms of complex conditional probabilities that describe the fundamental relation between precise statements about the three different observables. Since such transformations merely change the representation of the quantum state, these conditional probabilities provide a state-independent definition of the deterministic relation between the outcomes of different quantum measurements. In this paper, it is shown how classical reality emerges as an approximation to the fundamental laws of quantum determinism expressed by complex conditional probabilities. The quantum mechanical origin of phase spaces and trajectories is identified and implications for the interpretation of quantum measurements are considered. It is argued that the transformation laws of quantum determinism provide a fundamental description of the measurement dependence of empirical reality.Comment: 12 pages, including 1 figure, updated introduction includes references to the historical background of complex joint probabilities and to related work by Lars M. Johanse
    • 

    corecore