150 research outputs found

    Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Neurobiology of Disease. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia.This work was supported by Repligen Corporation; Muscular Dystrophy Association (MDA) USA; Ataxia UK; Friedreich's Ataxia Research Alliance (FARA); GoFAR; and the Wellcome Trust [089757]

    Genetic Knock-Down of Hdac3 Does Not Modify Disease-Related Phenotypes in a Mouse Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by an expansion of a CAG/polyglutamine repeat for which there are no disease modifying treatments. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression and has been recapitulated across multiple HD models. Altered histone acetylation has been proposed to underlie this transcriptional dysregulation and histone deacetylase (HDAC) inhibitors, such as suberoylanilide hydroxamic acid (SAHA), have been shown to improve polyglutamine-dependent phenotypes in numerous HD models. However potent pan-HDAC inhibitors such as SAHA display toxic side-effects. To better understand the mechanism underlying this potential therapeutic benefit and to dissociate the beneficial and toxic effects of SAHA, we set out to identify the specific HDAC(s) involved in this process. For this purpose, we are exploring the effect of the genetic reduction of specific HDACs on HD-related phenotypes in the R6/2 mouse model of HD. The study presented here focuses on HDAC3, which, as a class I HDAC, is one of the preferred targets of SAHA and is directly involved in histone deacetylation. To evaluate a potential benefit of Hdac3 genetic reduction in R6/2, we generated a mouse carrying a critical deletion in the Hdac3 gene. We confirmed that the complete knock-out of Hdac3 is embryonic lethal. To test the effects of HDAC3 inhibition, we used Hdac3+/− heterozygotes to reduce nuclear HDAC3 levels in R6/2 mice. We found that Hdac3 knock-down does not ameliorate physiological or behavioural phenotypes and has no effect on molecular changes including dysregulated transcripts. We conclude that HDAC3 should not be considered as the major mediator of the beneficial effect induced by SAHA and other HDAC inhibitors in HD

    Genetic Knock-Down of HDAC7 Does Not Ameliorate Disease Pathogenesis in the R6/2 Mouse Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is an inherited, progressive neurological disorder caused by a CAG/polyglutamine repeat expansion, for which there is no effective disease modifying therapy. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression. Administration of histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) have consistently shown therapeutic potential in models of HD, at least partly through increasing the association of acetylated histones with down-regulated genes and by correcting mRNA abnormalities. The HDAC enzyme through which SAHA mediates its beneficial effects in the R6/2 mouse model of HD is not known. Therefore, we have embarked on a series of genetic studies to uncover the HDAC target that is relevant to therapeutic development for HD. HDAC7 is of interest in this context because SAHA has been shown to decrease HDAC7 expression in cell culture systems in addition to inhibiting enzyme activity. After confirming that expression levels of Hdac7 are decreased in the brains of wild type and R6/2 mice after SAHA administration, we performed a genetic cross to determine whether genetic reduction of Hdac7 would alleviate phenotypes in the R6/2 mice. We found no improvement in a number of physiological or behavioral phenotypes. Similarly, the dysregulated expression levels of a number of genes of interest were not improved suggesting that reduction in Hdac7 does not alleviate the R6/2 HD-related transcriptional dysregulation. Therefore, we conclude that the beneficial effects of HDAC inhibitors are not predominantly mediated through the inhibition of HDAC7

    SIRT2 Ablation Has No Effect on Tubulin Acetylation in Brain, Cholesterol Biosynthesis or the Progression of Huntington's Disease Phenotypes In Vivo

    Get PDF
    Huntington's disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. The molecular pathogenesis of HD is complex and many mechanisms and cellular processes have been proposed as potential sites of therapeutic intervention. However, prior to embarking on drug development initiatives, it is essential that therapeutic targets can be validated in mammalian models of HD. Previous studies in invertebrate and cell culture HD models have suggested that inhibition of SIRT2 could have beneficial consequences on disease progression. SIRT2 is a NAD[superscript +]-dependent deacetylase that has been proposed to deacetylate α-tubulin, histone H4 K16 and to regulate cholesterol biogenesis – a pathway which is dysregulated in HD patients and HD mouse models. We have utilized mice in which SIRT2 has been reduced or ablated to further explore the function of SIRT2 and to assess whether SIRT2 loss has a beneficial impact on disease progression in the R6/2 mouse model of HD. Surprisingly we found that reduction or loss of SIRT2 had no effect on the acetylation of α-tubulin or H4K16 or on cholesterol biosynthesis in the brains of wild type mice. Equally, genetic reduction or ablation of SIRT2 had no effect on HD progression as assessed by a battery of physiological and behavioural tests. Furthermore, we observed no change in aggregate load or levels of soluble mutant huntingtin transprotein. Intriguingly, neither the constitutive genetic loss nor acute pharmacological inhibition of SIRT2 affected the expression of cholesterol biosynthesis enzymes in the context of HD. Therefore, we conclude that SIRT2 inhibition does not modify disease progression in the R6/2 mouse model of HD and SIRT2 inhibition should not be prioritised as a therapeutic option for HD.American Parkinson Disease Association, Inc. (Fellowship)Johnson & Johnson. Pharmaceutical Research & Development (Fellowship

    Hdac6 Knock-Out Increases Tubulin Acetylation but Does Not Modify Disease Progression in the R6/2 Mouse Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disorder for which there is no effective disease modifying treatment. Following-on from studies in HD animal models, histone deacetylase (HDAC) inhibition has emerged as an attractive therapeutic option. In parallel, several reports have demonstrated a role for histone deacetylase 6 (HDAC6) in the modulation of the toxicity caused by the accumulation of misfolded proteins, including that of expanded polyglutamine in an N-terminal huntingtin fragment. An important role for HDAC6 in kinesin-1 dependent transport of brain-derived neurotrophic factor (BDNF) from the cortex to the striatum has also been demonstrated. To elucidate the role that HDAC6 plays in HD progression, we evaluated the effects of the genetic depletion of HDAC6 in the R6/2 mouse model of HD. Loss of HDAC6 resulted in a marked increase in tubulin acetylation throughout the brain. Despite this, there was no effect on the onset and progression of a wide range of behavioural, physiological, molecular and pathological HD-related phenotypes. We observed no change in the aggregate load or in the levels of soluble mutant exon 1 transprotein. HDAC6 genetic depletion did not affect the efficiency of BDNF transport from the cortex to the striatum. Therefore, we conclude that HDAC6 inhibition does not modify disease progression in R6/2 mice and HDAC6 should not be prioritized as a therapeutic target for HD

    Hdac6 Knock-Out Increases Tubulin Acetylation but Does Not Modify Disease Progression in the R6/2 Mouse Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disorder for which there is no effective disease modifying treatment. Following-on from studies in HD animal models, histone deacetylase (HDAC) inhibition has emerged as an attractive therapeutic option. In parallel, several reports have demonstrated a role for histone deacetylase 6 (HDAC6) in the modulation of the toxicity caused by the accumulation of misfolded proteins, including that of expanded polyglutamine in an N-terminal huntingtin fragment. An important role for HDAC6 in kinesin-1 dependent transport of brain-derived neurotrophic factor (BDNF) from the cortex to the striatum has also been demonstrated. To elucidate the role that HDAC6 plays in HD progression, we evaluated the effects of the genetic depletion of HDAC6 in the R6/2 mouse model of HD. Loss of HDAC6 resulted in a marked increase in tubulin acetylation throughout the brain. Despite this, there was no effect on the onset and progression of a wide range of behavioural, physiological, molecular and pathological HD-related phenotypes. We observed no change in the aggregate load or in the levels of soluble mutant exon 1 transprotein. HDAC6 genetic depletion did not affect the efficiency of BDNF transport from the cortex to the striatum. Therefore, we conclude that HDAC6 inhibition does not modify disease progression in R6/2 mice and HDAC6 should not be prioritized as a therapeutic target for HD

    Unconventional Transcriptional Response to Environmental Enrichment in a Mouse Model of Rett Syndrome

    Get PDF
    Background: Rett syndrome (RTT) is an X-linked postnatal neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2) and one of the leading causes of mental retardation in females. RTT is characterized by psychomotor retardation, purposeless hand movements, autistic-like behavior and abnormal gait. We studied the effects of environmental enrichment (EE) on the phenotypic manifestations of a RTT mouse model that lacks MeCP2 (Mecp2 2/y). Principal Findings: We found that EE delayed and attenuated some neurological alterations presented by Mecp2 2/y mice and prevented the development of motor discoordination and anxiety-related abnormalities. To define the molecular correlate of this beneficial effect of EE, we analyzed the expression of several synaptic marker genes whose expression is increased by EE in several mouse models. Conclusions/Significance: We found that EE induced downregulation of several synaptic markers, suggesting that th

    The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: Possible relevance for treatment-resistant depression.

    Get PDF
    Major depression is a highly complex disabling psychiatric disorder affecting millions of people worldwide. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these medications. A better understanding of the neurobiology of depression and the mechanisms underlying antidepressant response is thus critically needed. We previously reported that mice lacking CREB-regulated transcription coactivator 1 (CRTC1) exhibit a depressive-like phenotype and a blunted antidepressant response to the selective serotonin reuptake inhibitor fluoxetine. In this study, we similarly show that Crtc1(-/-) mice are resistant to the antidepressant effect of chronic desipramine in a behavioral despair paradigm. Supporting the blunted response to this tricyclic antidepressant, we found that desipramine does not significantly increase the expression of Bdnf and Nr4a1-3 in the hippocampus and prefrontal cortex of Crtc1(-/-) mice. Epigenetic regulation of neuroplasticity gene expression has been associated with depression and antidepressant response, and histone deacetylase (HDAC) inhibitors have been shown to have antidepressant-like properties. Here, we show that unlike conventional antidepressants, chronic systemic administration of the HDAC inhibitor SAHA partially rescues the depressive-like behavior of Crtc1(-/-) mice. This behavioral effect is accompanied by an increased expression of Bdnf, but not Nr4a1-3, in the prefrontal cortex of these mice, suggesting that this epigenetic intervention restores the expression of a subset of genes by acting downstream of CRTC1. These findings suggest that CRTC1 alterations may be associated with treatment-resistant depression, and support the interesting possibility that targeting HDACs may be a useful therapeutic strategy in antidepressant development

    Identification of Potential Therapeutic Drugs for Huntington's Disease using Caenorhabditis elegans

    Get PDF
    The prolonged time course of Huntington's disease (HD) neurodegeneration increases both the time and cost of testing potential therapeutic compounds in mammalian models. An alternative is to initially assess the efficacy of compounds in invertebrate models, reducing time of testing from months to days.We screened candidate therapeutic compounds that were identified previously in cell culture/animal studies in a C. elegans HD model and found that two FDA approved drugs, lithium chloride and mithramycin, independently and in combination suppressed HD neurotoxicity. Aging is a critical contributor to late onset neurodegenerative diseases. Using a genetic strategy and a novel assay, we demonstrate that lithium chloride and mithramycin remain neuroprotective independent of activity of the forkhead transcription factor DAF-16, which mediates the effects of the insulin-like signaling pathway on aging.These results suggest that pathways involved in polyglutamine-induced degeneration are distinct from specific aging pathways. The assays presented here will be useful for rapid and inexpensive testing of other potential HD drugs and elucidating pathways of drug action. Additionally, the neuroprotection conferred by lithium chloride and mithramycin suggests that these drugs may be useful for polyglutamine disease therapy

    Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth <it>in vitro </it>and <it>in vivo </it>using established medulloblastoma models.</p> <p>Methods</p> <p>Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested <it>in vitro </it>and <it>in vivo</it>.</p> <p>Results</p> <p>Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC) 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In <it>in vivo </it>medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model.</p> <p>Conclusions</p> <p>The <it>in vitro </it>and <it>in vivo </it>data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma.</p
    corecore