26,309 research outputs found
Vortex states in iron-based superconductors with collinear antiferromagnetic cores
Magnetism in the FeAs stoichiometric compounds and its interplay with superconductivity in vortex states are studied by self-consistently solving the Bogoliubov-de Gennes equations based on a two-orbital model with including the on-site interactions between electrons in the two orbitals. It is revealed that for the parent compound, magnetism is caused by the strong Hund's coupling, and the Fermi-surface topology aids to select the spin-density-wave (SDW) pattern. The superconducting (SC) order parameter with s± = Δ0 cos (kx) cos (ky) symmetry is found to be the most favorable pairing for both the electron- and hole-doped cases while the local density of states exhibits the characteristic of nodal gap for the former and full gap for the latter. In the vortex state, the emergence of the field-induced SDW depends on the strength of the Hund's coupling and the Coulomb repulsions. The field-induced SDW gaps the finite-energy contours on the electron- and hole-pocket sides, leading to the dual structures with one reflecting the SC pairing and the other being related to the SDW order. These features can be discernable in STM measurements for identifying the interplay between the field-induced SDW order and the SC order around the core region. © 2009 The American Physical Society.published_or_final_versio
Gate controlled electronic transport in monolayer MoS2 field effect transistor
published_or_final_versio
Cooperative Cargo Transport by Several Molecular Motors
The transport of cargo particles which are pulled by several molecular motors
in a cooperative manner is studied theoretically. The transport properties
depend primarily on the maximal number, , of motor molecules that may pull
simultaneously on the cargo particle. Since each motor must unbind from the
filament after a finite number of steps but can also rebind to it again, the
actual number of pulling motors is not constant but varies with time between
zero and . An increase in the maximal number leads to a strong increase
of the average walking distance (or run length) of the cargo particle. If the
cargo is pulled by up to kinesin motors, e.g., the walking distance is
estimated to be micrometers which implies that seven or eight
kinesin molecules are sufficient to attain an average walking distance in the
centimeter range. If the cargo particle is pulled against an external load
force, this force is shared between the motors which provides a nontrivial
motor-motor coupling and a generic mechanism for nonlinear force-velocity
relationships. With increasing load force, the probability distribution of the
instantenous velocity is shifted towards smaller values, becomes broader, and
develops several peaks. Our theory is consistent with available experimental
data and makes quantitative predictions that are accessible to systematic in
vitro experiments.Comment: 24 pages, latex, 6 figures, includes Supporting Tex
Annealing study of A1/GaSb contact with the use of doppler broadening technique
Using a monoenergetic positron beam, annealing study of the Al/n-GaSb system was performed by monitoring the Doppler broadening of the annihilation radiation as a function of the positron implanting energy. The S-parameter against positron energy data was successfully fitted by a three-layer model (Al/interface/GaSb). The annealing out of the open volume defects in the polycrystalline Al layer was revealed by the decrease in the S-parameter and the increase in the effective diffusion length of the Al layer. For the as-deposited samples, a∼5 nm interfacial region with S-parameter larger than those of the Al overlayer and the bulk was identified. After the 400^ºC annealing, this interfacial region extends to over 40 nm and its S-parameter dramatically drops. This is possibly due to the new phase formation at the interface. Annealing behaviors of SB and L+,B of the GaSb bulk showed the annealing out of positron traps (possibly the VGa-related defect) at 250ºC. However, a further annealing at 400ºC induces the formation of positron traps, which are possibly of another kind of VGa-related defect and the positron shallow trap GaSb antisite.published_or_final_versionProceedings of the 35th Polish Seminar on Positron Annihilation (PSPA), Turawa, Poland, 20-24 September 2004. In Acta Physica Polonica Series A: General Physics, Physics of Condensed Matter, Optics and Quantum Electronics, Atomic and Molecular Physics, Applied Physics, 2005, v. 107 n. 5, p. 874-87
An experimental study of concrete resistivity and the effects of electrode configuration and current frequency on measurement
Electrical resistivity, a measurable parameter of the state of concrete, plays an important role in the assessment of reinforced concrete structures. An experimental study using two-electrode method has been conducted to evaluate the resistivity of Portland cement concrete. Internal and external electrodes were varied in order to understand effect of the electrodes configuration, where carbon fibre (CF) sheets were employed as the internal electrodes and CF and copper sheets were used as external electrodes. Furthermore, frequency of applied current was varied from low to high, to identify the most suitable frequency that can be utilized for stable and reliable results. Optimised internal electrodes configuration and the current frequency of 10,000 Hz were used to measure the resistivity on a series of concrete cubes, which were made using three different water to cement ratios and four different chloride contents
Deep-level defects in n-type 6H silicon carbide induced by He implantation
Defects in He-implanted n -type 6H-SiC samples have been studied with deep-level transient spectroscopy. A deep-level defect was identified by an intensity with a logarithmical dependence on the filling pulse width, which is characteristic of dislocation defects. Combined with information extracted from positron-annihilation spectroscopic measurements, this defect was associated with the defect vacancy bound to a dislocation. Defect levels at 0.380.44 eV (E1 E2), 0.50, 0.53, and 0.640.75 eV (Z1 Z2) were also induced by He implantation. Annealing studies on these samples were also performed and the results were compared with those obtained from e- -irradiated (0.3 and 1.7 MeV) and neutron-irradiated n -type 6H-SiC samples. The E1 E2 and the Z1 Z2 signals found in the He-implanted sample are more thermally stable than those found in the electron-irradiated or the neutron-irradiated samples. © 2005 American Institute of Physics.published_or_final_versio
Observation of the Nernst signal generated by fluctuating Cooper pairs
Long-range order is destroyed in a superconductor warmed above its critical
temperature (Tc). However, amplitude fluctuations of the superconducting order
parameter survive and lead to a number of well established phenomena such as
paraconductivity : an excess of charge conductivity due to the presence of
short-lived Cooper pairs in the normal state. According to an untested theory,
these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous
superconducting films, the lifetime of Cooper pairs exceeds the elastic
lifetime of quasi-particles in a wide temperature range above Tc; consequently,
the Cooper pairs Nernst signal dominate the response of the normal electrons
well above Tc. In two dimensions, the magnitude of the expected signal depends
only on universal constants and the superconducting coherence length, so the
theory can be unambiguously tested. Here, we report on the observation of a
Nernst signal in such a superconductor traced deep into the normal state. Since
the amplitude of this signal is in excellent agreement with the theoretical
prediction, the result provides the first unambiguous case for a Nernst effect
produced by short-lived Cooper pairs
Effects of Glucose Concentration on Propofol Cardioprotection against Myocardial Ischemia Reperfusion Injury in Isolated Rat Hearts
published_or_final_versio
Foot Bone in Vivo: Its Center of Mass and Centroid of Shape
This paper studies foot bone geometrical shape and its mass distribution and
establishes an assessment method of bone strength. Using spiral CT scanning,
with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot
bones in vivo and investigate the relationship between the bone's external
shape and internal structure. This analysis is explored on the bases of the
bone's center of mass and its centroid of shape. We observe the phenomenon of
superposition of center of mass and centroid of shape fairly precisely,
indicating a possible appearance of biomechanical organism. We investigate two
aspects of the geometrical shape, (i) distance between compact bone's centroid
of shape and that of the bone and (ii) the mean radius of the same density bone
issue relative to the bone's centroid of shape. These quantities are used to
interpret the influence of different physical exercises imposed on bone
strength, thereby contributing to an alternate assessment technique to bone
strength.Comment: 9 pages, 4 figure
- …
