273 research outputs found

    Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer

    Get PDF
    While there is no reliable serum biomarker for the diagnosis and monitoring of patients with gastric cancer, we tested the potential diagnostic and prognostic values of detecting methylation changes in the serum of gastric cancer patients. DNA was extracted from the pretherapeutic serum of 60 patients with confirmed gastric adenocarcinoma and 22 age-matched noncancer controls. Promoter hypermethylation in 10 tumour-related genes (APC, E-cadherin, GSTP1, hMLH1, MGMT, p15, p16, SOCS1, TIMP3 and TGF-beta RII) was determined by quantitative methylation-specific PCR (MethyLight). Preferential methylation in the serum DNA of gastric cancer patients was noted in APC (17%), E-cadherin (13%), hMLH1 (41%) and TIMP3 (17%) genes. Moreover, patients with stages III/IV diseases tended to have higher concentrations of methylated APC (P=0.08), TIMP3 (P=0.005) and hMLH1 (P=0.03) in the serum. In all, 33 cancers (55%) had methylation detected in the serum in at least one of these four markers, while three normal subjects had methylation detected in the serum (specificity 86%). The combined use of APC and E-cadherin methylation markers identified a subgroup of cancer patients with worse prognosis (median survival 3.3 vs 16.1 months, P=0.006). These results suggest that the detection of DNA methylation in the serum may carry both diagnostic and therapeutic values in gastric cancer patients

    Longevity in mice: is stress resistance a common factor?

    Get PDF
    A positive relationship between stress resistance and longevity has been reported in a multitude of studies in organisms ranging from yeast to mice. Several mouse lines have been discovered or developed that exhibit extended longevities when compared with normal, wild-type mice of the same genetic background. These long-living lines include the Ames dwarf, Snell dwarf, growth hormone receptor knockout (Laron dwarf), IGF-1 receptor heterozygote, Little, α-MUPA knockout, p66shc knockout, FIRKO, mClk-1 heterozygote, thioredoxin transgenic, and most recently the Klotho transgenic mouse. These mice are described in terms of the reported extended lifespans and studies involving resistance to stress. In addition, caloric restriction (CR) and stress resistance are briefly addressed for comparison with genetically altered mice. Although many of the long-living mice have GH/IGF-1/insulin signaling-related alterations and enhanced stress resistance, there are some that exhibit life extension without an obvious link to this hormone pathway. Resistance to oxidative stress is by far the most common system studied in long-living mice, but there is evidence of enhancement of resistance in other systems as well. The differences in stress resistance between long-living mutant and normal mice result from complex interrelationships among pathways that appear to coordinate signals of growth and metabolism, and subsequently result in differences in lifespan

    RASSF1A hypermethylation in pretreatment serum DNA of neuroblastoma patients: a prognostic marker

    Get PDF
    The tumour suppressor gene RASSF1A is known to be frequently silenced by promoter hypermethylation in neuroblastoma tumours. Here we explored the possible prognostic significance of aberrant promoter hypermethylation of RASSF1A in serum DNA samples of patients with neuroblastoma as a surrogate marker for circulating tumour cells. We analysed the methylation status of the RASSF1A gene in matched tumour and pretreatment serum DNA obtained from 68 neuroblastoma patients. Hypermethylation of RASSF1A in tumour samples was found in 64 patients (94%). In contrast, serum methylation of RASSF1A was observed in 17 patients (25%). Serum methylation of RASSF1A was found to be statistically associated with age ⩾12 months at diagnosis (P=0.002), stage 4 (P<0.001) and MYCN amplification (P<0.001). The influence of serum RASSF1A methylation on prognosis was found to be comparable with that of the currently most reliable marker, MYCN amplification on univariate analysis (hazard ratio, 9.2; 95% confidence interval (CI), 2.8–30.1; P<0.001). In multivariate analysis of survival, methylation of RASSF1A in serum had a hazard ratio of 2.4 (95% CI, 0.6–9.2), although this association did not reach statistical significance (P=0.194). These findings show that the methylation status of RASSF1A in the serum of patients with neuroblastoma has the potential to become a prognostic predictor of outcome

    A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy

    Get PDF
    Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy.A case-control design was used to test the association of gene expression with outcome. Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated-including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84-0.92). Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond 5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped to 8q24 were significantly enriched in the model.Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence

    Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    Get PDF
    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension

    Sport in a youth prison: male young offenders' experiences of a sporting intervention

    Get PDF
    The numbers of children under the age of 18 being incarcerated in England and Wales has decreased of late, with official figures indicating that the current population of just over 1500 has halved during the last decade. But levels of reoffending among children released from prison remain the highest, with three out of four young people being reconvicted within one year of release from juvenile custody. Despite the fact that the overwhelming majority of community-based sports projects target children and young people, when it comes to incarcerated populations, sporting initiatives are less prevalent. Where sport has become well established as a useful social cohesion/inclusion strategy in community settings, some of these approaches have been translated into custodial settings. Resulting research has often proclaimed sporting pursuits as a modern-day panacea in terms of their social, psychological and emotional benefits, yet few studies have explored the nuances of sports-based interventions within secure settings. This paper comprises a small-scale, qualitative study of one such intervention in a Young Offender Institution in the South of England. Placing respondent accounts at the centre of the analysis, the paper sheds light on the practicalities of programme delivery by uncovering the motivating factors behind participant engagement whilst exploring broader notions of personal development. The paper concludes by highlighting that sport/physical activity can confer significant psychosocial benefits and promote the rehabilitation of young people leaving custody, particularly when integrated into wider programmes of support and provision

    EL_PSSM-RT:DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation

    Get PDF
    Background: Prediction of DNA-binding residue is important for understanding the protein-DNA recognition mechanism. Many computational methods have been proposed for the prediction, but most of them do not consider the relationships of evolutionary information between residues. Results: In this paper, we first propose a novel residue encoding method, referred to as the Position Specific Score Matrix (PSSM) Relation Transformation (PSSM-RT), to encode residues by utilizing the relationships of evolutionary information between residues. PDNA-62 and PDNA-224 are used to evaluate PSSM-RT and two existing PSSM encoding methods by five-fold cross-validation. Performance evaluations indicate that PSSM-RT is more effective than previous methods. This validates the point that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction. An ensemble learning classifier (EL_PSSM-RT) is also proposed by combining ensemble learning model and PSSM-RT to better handle the imbalance between binding and non-binding residues in datasets. EL_PSSM-RT is evaluated by five-fold cross-validation using PDNA-62 and PDNA-224 as well as two independent datasets TS-72 and TS-61. Performance comparisons with existing predictors on the four datasets demonstrate that EL_PSSM-RT is the best-performing method among all the predicting methods with improvement between 0.02-0.07 for MCC, 4.18-21.47% for ST and 0.013-0.131 for AUC. Furthermore, we analyze the importance of the pair-relationships extracted by PSSM-RT and the results validates the usefulness of PSSM-RT for encoding DNA-binding residues. Conclusions: We propose a novel prediction method for the prediction of DNA-binding residue with the inclusion of relationship of evolutionary information and ensemble learning. Performance evaluation shows that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction and ensemble learning can be used to address the data imbalance issue between binding and non-binding residues. A web service of EL_PSSM-RT ( http://hlt.hitsz.edu.cn:8080/PSSM-RT_SVM/ ) is provided for free access to the biological research community
    corecore