52 research outputs found

    Upregulation of P2Y2 receptors by retinoids in normal human epidermal keratinocytes

    Get PDF
    Retinoids, vitamin A derivatives, are important regulators of the growth and differentiation of skin cells. Although retinoids are therapeutically used for several skin ailments, little is known about their effects on P2 receptors, known to be involved in various functions in the skin. DNA array analysis showed that treatment of normal human epidermal keratinocytes (NHEKs) with all-trans-retinoic acid (ATRA), an agonist to RAR (retinoic acid receptor), enhanced the expression of mRNA for the P2Y2 receptor, a metabotropic P2 receptor that is known to be involved in the proliferation of the epidermis. The expression of other P2 receptors in NHEKs was not affected by ATRA. ATRA increased the mRNA for the P2Y2 receptor in a concentration-dependent fashion (1 nM to 1 μM). Am80, a synthesized agonist to RAR, showed a similar enhancement, whereas 9-cis-retinoic acid (9-cisRA), an agonist to RXR (retinoid X receptor), enhanced P2Y2 gene expression to a lesser extent. Ca2+ imaging analysis showed that ATRA also increased the function of P2Y2 receptors in NHEKs. Retinoids are known to enhance the turnover of the epidermis by increasing both proliferation and terminal differentiation. The DNA microarray analysis also revealed that ATRA upregulates various genes involved in the differentiation of NHEKs. Our present results suggest that retinoids, at least in part, exert their proliferative effects by upregulating P2Y2 receptors in NHEKs. This effect of retinoids may be closely related to their therapeutic effect against various ailments or aging events in skins such as over-keratinization, pigmentation and re-modeling

    Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development.

    Get PDF
    Cardiac development arises from two sources of mesoderm progenitors, the first heart field (FHF) and the second (SHF). Mesp1 has been proposed to mark the most primitive multipotent cardiac progenitors common for both heart fields. Here, using clonal analysis of the earliest prospective cardiovascular progenitors in a temporally controlled manner during early gastrulation, we found that Mesp1 progenitors consist of two temporally distinct pools of progenitors restricted to either the FHF or the SHF. FHF progenitors were unipotent, whereas SHF progenitors were either unipotent or bipotent. Microarray and single-cell PCR with reverse transcription analysis of Mesp1 progenitors revealed the existence of molecularly distinct populations of Mesp1 progenitors, consistent with their lineage and regional contribution. Together, these results provide evidence that heart development arises from distinct populations of unipotent and bipotent cardiac progenitors that independently express Mesp1 at different time points during their specification, revealing that the regional segregation and lineage restriction of cardiac progenitors occur very early during gastrulation.This is the author's accepted manuscript and will be under embargo until the 24th of February 2015. The final version is published by NPG in Nature Cell Biology here: http://www.nature.com/ncb/journal/v16/n9/full/ncb3024.html

    Antagonizing retinoic acid receptors increases myeloid cell production by cultured human hematopoietic stem cells

    Get PDF
    Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D(3) to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC(50)–0.3 nM): ~50-fold more is required for activation of RARα (EC(50)–16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation

    IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development.

    No full text
    Secreted factors from the epicardium are believed to be important in directing heart ventricular cardiomyocyte proliferation and morphogenesis, although the specific factors involved have not been identified or characterized adequately. We found that IGF2 is the most prominent mitogen made by primary mouse embryonic epicardial cells and by a newly derived immortalized mouse embryonic epicardial cell line called MEC1. In vivo, Igf2 is expressed in the embryonic mouse epicardium during midgestation heart development. Using a whole embryo culture assay in the presence of inhibitors, we confirmed that IGF signaling is required to activate the ERK proliferation pathway in the developing heart, and that the epicardium is required for this response. Global disruption of the Igf2 gene, or conditional disruption of the two IGF receptor genes Igf1r and Insr together in the myocardium, each resulted in a significant decrease in ventricular wall proliferation and in ventricular wall hypoplasia. Ventricular cardiomyocyte proliferation in mutant embryos was restored to normal at E14.5, concurrent with the establishment of coronary circulation. Our results define IGF2 as a previously unexplored epicardial mitogen that is required for normal ventricular chamber development

    Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation.

    No full text
    Tie-1 and Tie-2 define a new class of receptor tyrosine kinases that are specifically expressed in developing vascular endothelial cells. To study the functions of Tie-1 and Tie-2 during vascular endothelial cell growth and differentiation in vivo, targeted mutations of the genes in mice were introduced by homologous recombination. Embryos deficient in Tie-1 failed to establish structural integrity of vascular endothelial cells, resulting in oedema and subsequently localized haemorrhage. However, analyses of embryos deficient in Tie-2 showed that it is important in angiogenesis, particularly for vascular network formation in endothelial cells. This result contrasts with previous reports on Tie-2 function in vasculogenesis and/or endothelial cell survival. Our in vivo analyses indicate that the structurally related receptor tyrosine kinases Tie-1 and Tie-2 have important but distinct roles in the formation of blood vessels

    Getting the T-box dose right

    No full text
    Holt-Oram syndrome has been associated with mutations in the T-box transcription factor TBX5, but little is known about the function of this protein or how mutations in it cause disease. A new mouse model of this syndrome will help to answer some of these questions
    corecore