19 research outputs found

    Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea

    Get PDF
    Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems

    Differential Extinction and the Contrasting Structure of Polar Marine Faunas

    Get PDF
    Background: The low taxonomic diversity of polar marine faunas today reflects both the failure of clades to colonize or diversify in high latitudes and regional extinctions of once-present clades. However, simple models of polar evolution are made difficult by the strikingly different faunal compositions and community structures of the two poles. Methodology/Principal Findings: A comparison of early Cenozoic Arctic and Antarctic bivalve faunas with modern ones, within the framework of a molecular phylogeny, shows that while Arctic losses were randomly distributed across the tree, Antarctic losses were significantly concentrated in more derived families, resulting in communities dominated by basal lineages. Potential mechanisms for the phylogenetic structure to Antarctic extinctions include continental isolation, changes in primary productivity leading to turnover of both predators and prey, and the effect of glaciation on shelf habitats. Conclusions/Significance: These results show that phylogenetic consequences of past extinctions can vary substantially among regions and thus shape regional faunal structures, even when due to similar drivers, here global cooling, and provide the first phylogenetic support for the ‘‘retrograde’ ’ hypothesis of Antarctic faunal evolution

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well

    Probability Distributions on Cladograms

    No full text
    By analogy with the theory surrounding the Ewens sampling formula in neutral population genetics, we ask whether there exists a natural oneparameter family of probability distributions on cladograms ("evolutionary trees") which plays a central role in neutral evolutionary theory. Unfortunately the answer seems to be "no" -- see Conjecture 2. But we can embed the two most popular models into an interesting family which we call "beta-splitting" models. We briefly describe some mathematical results about this family, which exhibits qualitatively different behavior for different ranges of the parameter fi. 1 Probability distributions on partitions and neutral population genetics The first few sections give some conceptual background. The reader wishing to "get right to the point" should skim these and proceed to section 3. For each n there is a finite set of partitions of f1; 2; : : : ; ng into unordered families fA 1 ; A 2 ; : : : ; A k g of subsets. A one-parameter family (P (n) ` ) o..

    Spaces of the possible: universal Darwinism and the wall between technological and biological innovation

    No full text
    Innovations in biological evolution and in technology have many common features. Some of them involve similar processes, such as trial and error and horizontal information transfer. Others describe analogous outcomes such as multiple independent origins of similar innovations. Yet others display similar temporal patterns such as episodic bursts of change separated by periods of stasis. We review nine such commonalities, and propose that the mathematical concept of a space of innovations, discoveries or designs can help explain them. This concept can also help demolish a persistent conceptual wall between technological and biological innovation
    corecore