28 research outputs found

    Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance

    Get PDF
    Purpose. Muscle pain is a natural consequence of intense and prolonged exercise and has been suggested to be a limiter of performance. Transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) have been shown to reduce both chronic and acute pain in a variety of conditions. This study sought to ascertain whether TENS and IFC could reduce exercise-induced pain (EIP) and whether this would affect exercise performance. It was hypothesised that TENS and IFC would reduce EIP and result in an improved exercise performance. Methods. In two parts, 18 (Part I) and 22 (Part II) healthy male and female participants completed an isometric contraction of the dominant bicep until exhaustion (Part I) and a 16.1 km cycling time trial as quickly as they could (Part II) whilst receiving TENS, IFC and a SHAM placebo in a repeated measures, randomized cross-over, and placebo controlled design. Perceived EIP was recorded in both tasks using a validated subjective scale. Results. In Part I, TENS significantly reduced perceived EIP (mean reduction of 12%) during the isometric contraction (P = 0.006) and significantly improved participants’ time to exhaustion by a mean of 38% (P = 0.02). In Part II, TENS significantly improved (P = 0.003) participants’ time trial completion time (~2% improvement) through an increased mean power output. Conclusion. These findings demonstrate that TENS can attenuate perceived EIP in a healthy population and that doing so significantly improves endurance performance in both submaximal isometric single limb exercise and whole-body dynamic exercise

    Oral l-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion

    Get PDF
    PurposeThe study investigated the effect of a non-thermal cooling agent, l-menthol, on exercise at a fixed subjective rating of perceived exertion (RPE) in a hot environment.MethodEight male participants completed two trials at an exercise intensity between ‘hard’ and ‘very hard’, equating to 16 on the RPE scale at ~35 °C. Participants were instructed to continually adjust their power output to maintain an RPE of 16 throughout the exercise trial, stopping once power output had fallen by 30%. In a randomized crossover design, either l-menthol or placebo mouthwash was administered prior to exercise and at 10 min intervals. Power output, VO2, heart rate, core and skin temperature was monitored, alongside thermal sensation and thermal comfort. Isokinetic peak power sprints were conducted prior to and immediately after the fixed RPE trial.ResultsExercise time was greater (23:23 ± 3:36 vs. 21:44 ± 2:32 min; P = 0.049) and average power output increased (173 ± 24 vs. 167 ± 24 W; P = 0.044) in the l-menthol condition. Peak isokinetic sprint power declined from pre-post trial in the l-menthol l (9.0%; P = 0.015) but not in the placebo condition (3.4%; P = 0.275). Thermal sensation was lower in the l-menthol condition (P = 0.036), despite no changes in skin or core temperature (P > 0.05).Conclusion These results indicate that a non-thermal cooling mouth rinse lowered thermal sensation, resulting in an elevated work rate, which extended exercise time in the heat at a fixed RPE

    The interaction between peripheral and central fatigue at different muscle temperatures during sustained isometric contractions

    No full text
    Closed access. The journal's website is at: http://ajpregu.physiology.org/Changes in central fatigue have been linked to active and passive changes in core temperature as well as integration of sensory feedback from thermoreceptors in the skin. However, the effects of muscle temperature (Tm), and thereby metaboreceptor and local afferent nerve temperature, on central fatigue (measured using voluntary activation percentage) during sustained, high muscle fatigue exercise remain unexamined. In this study, we investigated Tm across the range of cold to hot, and its effect on voluntary activation percentage during sustained isometric contractions of the knee-extensors. The results suggest that contrary to brief contractions, during a sustained fatiguing contraction Tm significantly (p < 0.001) influences force output (-0.7% per-degree-centigrade increase) and central fatigue (-0.5% per-degree-centigrade increase) showing a negative relationship across the Tm continuum in moderately trained individuals. The negative relationship between voluntary activation percentage and Tm indicates muscle temperature may influence central fatigue during sustained and high muscle fatigue exercise. Based on an integrative analysis between the present data and previous literature, the impact of core and muscle temperature on voluntary muscle activation is estimated to show a ratio of 5.5 to 1 respectively. Accordingly, Tm could assume a secondary or tertiary role in the reduction of voluntary muscle activation when body temperature leaves a thermoneutral range
    corecore