300 research outputs found
Surgical Trial in Lobar Intracerebral Haemorrhage (STICH II) Protocol
<p>Abstract</p> <p>Background</p> <p>Within the spectrum of spontaneous intracerebral haemorrhage there are some patients with large or space occupying haemorrhage who require surgery for neurological deterioration and others with small haematomas who should be managed conservatively. There is equipoise about the management of patients between these two extremes. In particular there is some evidence that patients with lobar haematomas and no intraventricular haemorrhage might benefit from haematoma evacuation. The STICH II study will establish whether a policy of earlier surgical evacuation of the haematoma in selected patients will improve outcome compared to a policy of initial conservative treatment.</p> <p>Methods/Design</p> <p>an international multicentre randomised parallel group trial. Only patients for whom the treating neurosurgeon is in equipoise about the benefits of early craniotomy compared to initial conservative treatment are eligible. All patients must have a CT scan confirming spontaneous lobar intracerebral haemorrhage (â€1 cm from the cortex surface of the brain and 10-100 ml in volume). Any clotting or coagulation problems must be corrected and randomisation must take place within 48 hours of ictus. With 600 patients, the study will be able to demonstrate a 12% benefit from surgery (2p < 0.05) with 80% power.</p> <p>Stratified randomisation is undertaken using a central 24 hour randomisation service accessed by telephone or web. Patients randomised to early surgery should have the operation within 12 hours. Information about the status (Glasgow Coma Score and focal signs) of all patients through the first five days of their trial progress is also collected in addition to another CT scan at about five days (+/- 2 days). Outcome is measured at six months via a postal questionnaire to the patient. Primary outcome is death or severe disability defined using a prognosis based 8 point Glasgow Outcome Scale. Secondary outcomes include: Mortality, Rankin, Barthel, EuroQol, and Survival.</p> <p>Trial Registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN22153967">ISRCTN22153967</a></p
Limb proportions show developmental plasticity in response to embryo movement
Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development
Transcriptome Responses of Insect Fat Body Cells to Tissue Culture Environment
Tissue culture is performed to maintain isolated portions of multicellular organisms in an artificial milieu that is outside the individual organism and for considerable periods of time; cells derived from cultured explants are, in general, different from cells of the corresponding tissue in a living organism. The changes in cultured tissues that precede and often explain the subsequent cell proliferation of explant-derived cells have been partially studied, but little is known about the molecular and genomic basis of these changes. Comparative transcriptomics of intact and cultured (90 hours in MGM-450 insect medium) Bombyx mori tissues revealed that fewer genes represented a larger portion of the transcriptome of intact fat body tissues than of cultured fat body tissues. This analysis also indicated that expression of genes encoding sugar transporters and immune response proteins increased during culture and that expression of genes encoding lipoproteins and cuticle proteins decreased during culture. These results provide support for hypotheses that cultured tissues respond immunologically to surgery, adapt to the medium by accelerating sugar uptake, and terminate their identity as part of an intact organism by becoming independent of that organism
The primary cilium as a dual sensor of mechanochemical signals in chondrocytes
The primary cilium is an immotile, solitary, and microtubule-based structure that projects from cell surfaces into the extracellular environment. The primary cilium functions as a dual sensor, as mechanosensors and chemosensors. The primary cilia coordinate several essential cell signaling pathways that are mainly involved in cell division and differentiation. A primary cilium malfunction can result in several human diseases. Mechanical loading is sense by mechanosensitive cells in nearly all tissues and organs. With this sensation, the mechanical signal is further transduced into biochemical signals involving pathways such as Akt, PKA, FAK, ERK, and MAPK. In this review, we focus on the fundamental functional and structural features of primary cilia in chondrocytes and chondrogenic cells
Measurement of associated charm production induced by 400 GeV/c protons
An important input for the interpretation of the measurements of the SHiP ex- periment is a good knowledge of the differential charm production cross section, including cascade production. This is a proposal to measure the associated charm production cross section, employing the SPS 400 GeV/c proton beam and a replica of the first two interaction lengths of the SHiP target. The detection of the produc- tion and decay of charmed hadron in the target will be performed through nuclear emulsion films, employed in an Emulsion Cloud Chamber target structure. In order to measure charge and momentum of decay daughters, we intend to build a mag- netic spectrometer using silicon pixel, scintillating fibre and drift tube detectors. A muon tagger will be built using RPCs. An optimization run is scheduled in 2018, while the full measurement will be performed after the second LHC Long Shutdown
The SHiP experiment at the proposed CERN SPS Beam Dump Facility
The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end
Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)
Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento CientfĂico e TecnolĂłgico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de NvĂel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
- âŠ