429 research outputs found

    Prognostic significance of del 17p, ZAP-70 and CD38 as independent indicators for B-CLL: Correlation to response to treatment and disease outcome

    Get PDF
    Prognostic markers as CD38 and ZAP-70 and specific chromosomal abnormalities as del 17p have now been developed to refine the risk of progressive disease in chronic lymphocytic leukemia (CLL). This study analyzed 40 recently diagnosed, untreated B-CLL patients for CD38 and ZAP-70 expression by flow cytometry and for del 17p by conventional cytogenetics (CCG) and by fluorescence in situ hybridization (FISH) technique to evaluate their effect on the clinical course of CLL and as risk factors for disease progression in addition to their impact on response to treatment and disease outcome. Twenty healthy age- and sex-matched subjects were included as a control. The results revealed that CD38 and ZAP-70 expression were detected in 42.5% and 47.5% of cases, respectively. They were associated with an unfavorable clinical course. Higher levels were significantly associated with increased risk of unfavorable response to treatment (P = 0.003), with poor clinical outcome (P = 0.0001). Del 17p was detected in 35% of cases by FISH technique and in 7.5% by CCG. The deletion was significantly associated with progressive clinical course; poor response to treatment (P = 0.007) but not with disease outcome (P = 0.103). Combined analysis of ZAP-70 and CD38 yielded concordantly negative results in 50% of patients and concordantly positive results in 40% of patients, while 10% were discordant. CD38+/ZAP-70+ patients were significantly associated with progressive disease (P < 0.05) and with del 17p than CD38-/ZAP-70- patients (P = 0.008). Time to disease progression (TDP) was 6 months among CD38+/ZAP-70+ patients as compared to 16 months in CD38-/ZAP-70- patients. In patients with discordant results, the TDP was 9 months. Over-representation of the three parameters (CD38, ZAP-70 and del 17p) was detected in 22.5% of cases, and pointed towards even shorter TDP (4.5 months), more aggressive disease; more resistance to chemotherapy and poor outcome thus providing a precise tool for identifying high-risk patients. In conclusion, the combined expression of CD38 and ZAP-70 together with del 17p in CLL is a precise diagnostic tool for identifying high-risk patients and convey rapid progression; they are accurate predictors of clinical outcome thus could be used to indicate when more novel chemotherapeutic approaches are needed and provided help in guiding individual patient treatment.Keywords: CLL; CD38; ZAP-70; Del 17p; Immunophenotyping; FISH; Survival stud

    A comparative study of chromosome morphology among some accessions of Aegilops crassa

    Get PDF
    In this study karyotype and chromosome characteristics of the nine accessions of Aegilops crassa species obtained from gene bank of Seed and Plant Improvement Research Institute (SPII) of Iran and one accession collected by authors were inspected. Aceto-iron-hematoxilin staining method was used to stain chromosomes. For each accession, chromosome characteristics including long and short arms, chromosome lengths, arm ratio index and relative chromosome lengths were measured using micro measure 3.3 software. Results revealed that all of the studied accessions were tetraploid (2n = 4x = 28) and consisted of 13 pairs of metacentric and one pair of submetacentric chromosomes, of which two pairs were satellite chromosomes. Karyotype formula for these accessions were 13 m + 1 sm. Arm ratio index value of chromosomes ranged from 1.11 in chromosome number 6 to 1.77 in chromosome number 12. The B chromosomes were not seen in any of the accessions. Karyological characteristics of these accessions were similar to each other. However, some differences were observed between the accessions in some chromosome characteristics

    Effort estimation of FLOSS projects: A study of the Linux kernel

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 SpringerEmpirical research on Free/Libre/Open Source Software (FLOSS) has shown that developers tend to cluster around two main roles: “core” contributors differ from “peripheral” developers in terms of a larger number of responsibilities and a higher productivity pattern. A further, cross-cutting characterization of developers could be achieved by associating developers with “time slots”, and different patterns of activity and effort could be associated to such slots. Such analysis, if replicated, could be used not only to compare different FLOSS communities, and to evaluate their stability and maturity, but also to determine within projects, how the effort is distributed in a given period, and to estimate future needs with respect to key points in the software life-cycle (e.g., major releases). This study analyses the activity patterns within the Linux kernel project, at first focusing on the overall distribution of effort and activity within weeks and days; then, dividing each day into three 8-hour time slots, and focusing on effort and activity around major releases. Such analyses have the objective of evaluating effort, productivity and types of activity globally and around major releases. They enable a comparison of these releases and patterns of effort and activities with traditional software products and processes, and in turn, the identification of company-driven projects (i.e., working mainly during office hours) among FLOSS endeavors. The results of this research show that, overall, the effort within the Linux kernel community is constant (albeit at different levels) throughout the week, signalling the need of updated estimation models, different from those used in traditional 9am–5pm, Monday to Friday commercial companies. It also becomes evident that the activity before a release is vastly different from after a release, and that the changes show an increase in code complexity in specific time slots (notably in the late night hours), which will later require additional maintenance efforts

    Biochemical and Molecular Mechanisms of Folate Transport in Rat Pancreas; Interference with Ethanol Ingestion

    Get PDF
    Folic acid is an essential nutrient that is required for one-carbon biosynthetic processes and for methylation of biomolecules. Deficiency of this micronutrient leads to disturbances in normal physiology of cell. Chronic alcoholism is well known to be associated with folate deficiency which is due, in part to folate malabsorption. The present study deals with the mechanistic insights of reduced folate absorption in pancreas during chronic alcoholism. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and the mechanisms of alcohol associated reduced folate uptake was studied in pancreas. The folate transport system in the pancreatic plasma membrane (PPM) was found to be acidic pH dependent one. The transporters proton coupled folate transporter (PCFT) and reduced folate carrier (RFC) are involved in folate uptake across PPM. The folate transporters were found to be associated with lipid raft microdomain of the PPM. Ethanol ingestion decreased the folate transport by reducing the levels of folate transporter molecules in lipid rafts at the PPM. The decreased transport efficiency of the PPM was reflected as reduced folate levels in pancreas. The chronic ethanol ingestion led to decreased pancreatic folate uptake. The decreased levels of PCFT and RFC expression in rat PPM were due to decreased association of these proteins with lipid rafts (LR) at the PPM

    Seizures and Encephalitis in Myelin Oligodendrocyte Glycoprotein IgG Disease vs Aquaporin 4 IgG Disease

    Get PDF
    Importance: Antibodies to myelin oligodendrocyte glycoprotein IgG (MOG-IgG) are increasingly detected in patients with non–multiple sclerosis–related demyelination, some of whom manifest a neuromyelitis optica (NMO) phenotype. Cortical involvement, encephalopathy, and seizures are rare in aquaporin 4 antibody (AQP4-IgG)–related NMO in the white European population. However, the authors encountered several patients with seizures associated with MOG-IgG disease. Objective: To compare incidence of seizures and encephalitis-like presentation, or both between AQP4-IgG–positive and MOG-IgG–positive patients. Design, Setting, and Participants: Retrospective case series of all patients who were seropositive for MOG-IgG (n = 34) and the last 100 patients with AQP4-IgG disease (NMO spectrum disorder) seen in the NMO service between January 2013 and December 2016, and analysis was completed January 4, 2017. All patients were seen in a tertiary neurological center, The Walton Centre NHS Foundation Trust in Liverpool, England. Main Outcomes and Measures: The difference in seizure frequency between the AQP4-IgG–positive and MOG-IgG–positive patient groups was determined. Results: Thirty-four patients with MOG-IgG disease (20 female) with a median age at analysis of 30.5 years (interquartile range [IQR], 15-69 years), and 100 AQP4-IgG–positive patients (86 female) with a median age at analysis of 54 years (IQR, 12-91 years) were studied. Most patients were of white race. Five of the 34 patients with MOG-IgG (14.7%) had seizures compared with 1 patient with AQP4-IgG (2-sided P < .008, Fisher test). On magnetic resonance imaging, all 5 MOG-IgG–positive patients had inflammatory cortical brain lesions associated with the seizures. In 3 of the 5 MOG-IgG–positive patients, seizures occurred as part of the index event. Four of the 5 presented with encephalopathy and seizures, and disease relapsed in all 5 patients. Four of these patients were receiving immunosuppressant medication at last follow-up, and 3 continued to take antiepileptic medication. In contrast, the only AQP4-IgG–positive patient with seizures had a diagnosis of complex partial epilepsy preceding the onset of NMO by several years and experienced no encephalitic illness; her magnetic resonance imaging results demonstrated no cortical, subcortical, or basal ganglia involvement. Conclusions and Relevance: Patients with MOG-IgG–associated disease were more likely to have seizures and encephalitis-like presentation than patients with AQP4-IgG–associated disease

    Understanding nanomechanical and surface ellipsometry of optical F-doped SnO2 thin films by in-line APCVD

    Get PDF
    In this paper, a production-type chemical vapour deposition (CVD) is utilized to deposit fluorine doped tin oxide thin films of different thicknesses and dopant levels. Deposited films showed a preferred orientation along the (200) plane of a tetragonal structure due to the formation of halogen rich polar molecules during the process. A holistic approach studying elastic modulus and hardness of resulting films by a high-throughput atmospheric-pressure CVD process is described. The hardness values determined lie between 8 - 20 GPa. For a given load, the modulus generally increased slightly with the thickness. The average elastic recovery for the coatings was found to be between 45 – 50 %. Refractive index and thickness values derived from the fitted ellipsometry data were in excellent agreement with independent calculations from transmission and reflection data

    Malaria infection by sporozoite challenge induces high functional antibody titres against blood stage antigens after a DNA prime, poxvirus boost vaccination strategy in Rhesus macaques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A DNA prime, poxvirus (COPAK) boost vaccination regime with four antigens, i.e. a combination of two <it>Plasmodium knowlesi </it>sporozoite (<it>csp/ssp2</it>) and two blood stage (<it>ama1/msp1</it><sub><it>42</it></sub>) genes, leads to self-limited parasitaemia in 60% of rhesus monkeys and survival from an otherwise lethal infection with <it>P. knowlesi</it>. In the present study, the role of the blood stage antigens in protection was studied in depth, focusing on antibody formation against the blood stage antigens and the functionality thereof.</p> <p>Methods</p> <p>Rhesus macaques were immunized with the four-component vaccine and subsequently challenged i.v. with 100 <it>P. knowlesi </it>sporozoites. During immunization and challenge, antibody titres against the two blood stage antigens were determined, as well as the <it>in vitro </it>growth inhibition capacity of those antibodies. Antigen reversal experiments were performed to determine the relative contribution of antibodies against each of the two blood stage antigens to the inhibition.</p> <p>Results</p> <p>After vaccination, PkAMA1 and PkMSP1<sub>19 </sub>antibody titres in vaccinated animals were low, which was reflected in low levels of inhibition by these antibodies as determined by <it>in vitro </it>inhibition assays. Interestingly, after sporozoite challenge antibody titres against blood stage antigens were boosted over 30-fold in both protected and not protected animals. The <it>in vitro </it>inhibition levels increased to high levels (median inhibitions of 59% and 56% at 6 mg/mL total IgG, respectively). As growth inhibition levels were not significantly different between protected and not protected animals, the ability to control infection appeared cannot be explained by GIA levels. Judged by <it>in vitro </it>antigen reversal growth inhibition assays, over 85% of the inhibitory activity of these antibodies was directed against PkAMA1.</p> <p>Conclusions</p> <p>This is the first report that demonstrates that a DNA prime/poxvirus boost vaccination regimen induces low levels of malaria parasite growth inhibitory antibodies, which are boosted to high levels upon challenge. No association could, however, be established between the levels of inhibitory capacity <it>in vitro </it>and protection, either after vaccination or after challenge.</p

    Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate

    Get PDF
    Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material
    corecore