5,588 research outputs found
Service-oriented architecture as a driver of service innovation in newly emerging service systems: An exploratory view
Innovation in services can be regarded as an inter-play of service concepts, service delivery practices, client interfaces, and service delivery technologies. Furthermore, innovations in services are increasingly brought to the market by networks of firms, selected for their unique capabilities and operated in a coordinated manner, referred to as a service system or service value network (SVN). Bringing such service innovations to market by a network of firms requires extensive coordination and integration of data, information/knowledge and processes, while ensuring strategic alignment of partnering firms. In this research we examine how Service-Oriented Architecture (SOA), and its effect on Information Technology Infrastructure Flexibility (ITIF), may act as a potential enabler for recently identified organizational drivers of services innovation in a service system, namely Collaborative Architecture Management (CAM) and Collaborative Organizational Infrastructure (COI). A preliminary qualitative study of a Telco and its partners in the Middle East validates the dynamic capabilities at play in our proposed research model
How can Service-Oriented Architecture drive service innovation in newly emerging service systems?
Innovation in services can be regarded as an inter-play of service concepts, service delivery practices, client interfaces, and service delivery technologies. Furthermore, innovations in services are increasingly brought to the market by networks of firms, selected for their unique capabilities and operated in a coordinated manner, referred to as a service system or service value network (SVN). Bringing such service innovations to market by a network of firms requires extensive coordination and integration of data, information/knowledge and processes, while ensuring strategic alignment of partnering firms. In this research we examine how Service-Oriented Architecture (SOA), and its effect on Information Technology Infrastructure Flexibility (ITIF), acts as an enabler for recently identified organizational drivers of services innovation in a service system, namely Collaborative Architecture Management (CAM) and Collaborative Organizational Infrastructure (COI). © 2011 AICIT
Effects of deep levels on transconductance dispersion in AlGaAs/InGaAs pseudomorphic high electron mobility transistor
The effects of deep levels on the transconductance dispersion in an AlGaAs/InGaAs pseudomorphic high electron mobility transistor was interpreted using capacitance deep level transient spectroscopy (DLTS). Transconductance was decreased by 10% in the frequency range of 10 Hz-10 kHz at the negative gate bias, but it was increased at the positive one. In the DLTS spectra, two hole trap-like signals corresponding to surface states were only observed at the negative pulse bias, whereas the DX-center with the activation energy of 0.42 +/- 0.01 eV were observed at the positive one. The activation energy agrees well with that obtained from the temperature dependence of the positive transconductance dispersion, 0.39 +/- 0.03 eV. These provide evidence that the positive and negative transconductance dispersions are due to the DX center and surface states, respectively.open9
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis-and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.116224Ysciescopu
PocketMatch: A new algorithm to compare binding sites in protein structures
Background: Recognizing similarities and deriving relationships among protein molecules is a fundamental
requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of
the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison.

Results: Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant
manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless
combined with chemical nature of amino acids.

Conclusions: A new algorithm has been developed to compare binding sites in accurate, efficient and
high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that along
with the new alignment strategy used, it is sufficient to enable binding comparison with high sensitivity. Novel methodology has also been presented for validating the algorithm for accuracy and sensitivity with respect to geometry and chemical nature of the site. The method is also fast and takes about 1/250th second for one comparison on a single processor. A parallel version on BlueGene has also been implemented
The anomalous U(1) global symmetry and flavors from an SU(5) x SU(5) GUT in orbifold compactification
In string compactifications, frequently there appears the anomalous U(1)
gauge symmetry which belonged to E8E8 of the heterotic string. This
anomalous U(1) gauge boson obtains mass at the compactification scale, just
below GeV, by absorbing one pseudoscalar (corresponding to the
model-independent axion) from the second rank anti-symmetric tensor field
.
Below the compactification scale, there results a global symmetry U(1) whose charge is the original gauge U(1) charge. This is
the most natural global symmetry, realizing the "invisible" axion. This global
symmetry U(1) is suitable for a flavor symmetry. In the simplest
compactification model with the flipped SU(5) grand unification, we calculate
all the low energy parameters in terms of the vacuum expectation values of the
standard model singlets.Comment: 18 pages, 4 figur
Interplay between Fermi gamma-ray lines and collider searches
We explore the interplay between lines in the gamma-ray spectrum and LHC searches involving missing energy and photons. As an example, we consider a singlet Dirac
fermion dark matter with the mediator for Fermi gamma-ray line at 130 GeV. A new chiral or local U(1) symmetry makes weak-scale dark matter natural and provides the axion or
Z 0 gauge boson as the mediator connecting between dark matter and electroweak gauge bosons. In these models, the mediator particle can be produced in association with a
monophoton at colliders and it produces large missing energy through the decays into a DM pair or ZZ; Z with at least one Z decaying into a neutrino pair. We adopt the monophoton searches with large missing energy at the LHC and impose the bounds on the coupling and mass of the mediator field in the models. We show that the parameter space of the Z 0 mediation model is already strongly constrained by the LHC 8TeV data, whereas a certain region of the parameter space away from the resonance in axion-like mediator models are bounded. We foresee the monophoton bounds on the Z 0 and axion mediation models at the LHC 14 TeV
Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and proinflammatory dysregulation
Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro- inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process
A precision study of the fine tuning in the DiracNMSSM
Recently the DiracNMSSM has been proposed as a possible solution to reduce
the fine tuning in supersymmetry. We determine the degree of fine tuning needed
in the DiracNMSSM with and without non-universal gaugino masses and compare it
with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed
parameter regions we perform a precise calculation of the Higgs mass. In
addition, we include the limits from direct SUSY searches and dark matter
abundance. We find that both models are comparable in terms of fine tuning,
with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure
- …
