3,033 research outputs found

    Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis

    Get PDF
    Regulation of metabolism is complex and involves enzymes and membrane transporters, which form networks to support energy dynamics. Lactate, as a metabolic intermediate from glucose or glycogen breakdown, appears to play a major role as additional energetic substrate, which is shuttled between glycolytic and oxidative cells, both under hypoxic and normoxic conditions. Transport of lactate across the cell membrane is mediated by monocarboxylate transporters (MCTs) in cotransport with H+, which is a substrate, a signal and a modulator of metabolic processes. MCTs form a "transport metabolon" with carbonic anhydrases (CAs), which not only provide a rapid equilibrium between CO2, HCO3- and H+, but, in addition, enhances lactate transport, as found in Xenopus oocytes, employed as heterologous expression system, as well as in astrocytes and cancer cells. Functional interactions between different CA isoforms and MCTs have been found to be isoform-specific, independent of the enzyme's catalytic activity, and they require physical interaction between the proteins. CAs mediate between different states of metabolic acidosis, induced by glycolysis and oxidative phosphorylation, and play a relay function in coupling pH regulation and metabolism. In the brain, metabolic processes in astrocytes appear to be linked to bicarbonate transport and to neuronal activity. Here, we focus on physiological processes of energy dynamics in astrocytes as well as on the transfer of energetic substrates to neurons

    The effects of social service contact on teenagers in England

    Get PDF
    Objective: This study investigated outcomes of social service contact during teenage years. Method: Secondary analysis was conducted of the Longitudinal Survey of Young People in England (N = 15,770), using data on reported contact with social services resulting from teenagers’ behavior. Outcomes considered were educational achievement and aspiration, mental health, and locus of control. Inverse-probability-weighted regression adjustment was used to estimate the effect of social service contact. Results: There was no significant difference between those who received social service contact and those who did not for mental health outcome or aspiration to apply to university. Those with contact had lower odds of achieving good exam results or of being confident in university acceptance if sought. Results for locus of control were mixed. Conclusions: Attention is needed to the role of social services in supporting the education of young people in difficulty. Further research is needed on the outcomes of social services contact

    The political process of constructing a sustainable London Olympics sports development legacy

    Get PDF
    This study attempts to develop a research agenda for understanding the process of constructing a sustainable Olympic sports development legacy. The research uses a social constructivist perspective to examine the link between the 2012 London Olympic Games and sustainable sports development. The first part of the paper provides justification for the study of sport policy processes using a constructivist lens. This is followed by a section which critically unpacks sustainable sports development drawing on Mosse’s (1998) ideas of process-oriented research and Searle’s conceptualisation of the construction of social reality. Searle’s (1995) concepts of the assignment of function, collective intentionality, collective rules, and human capacity to cope with the environment are considered in relation to the events and discourses emerging from the legacy vision(s) associated with the 2012 London Olympic Games. The paper concludes by proposing a framework for engaging in process oriented research and highlights key elements, research questions, and methodological issues. The proposed constructivist approach can be used to inform policy, practice, and research on sustainable Olympic sports development legacy

    Electrical impedance along connective tissue planes associated with acupuncture meridians

    Get PDF
    BACKGROUND: Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone) visible by ultrasound have greater electrical conductance (less electrical impedance) than non-meridian, parallel control segments. METHODS: We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC) constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps) to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity). RESULTS: At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω) compared with control segments (75.0 ± 5.9 Ω) (p = 0.0003). At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω) and control segments (68.5 ± 7.5 Ω) were not significantly different (p = 0.70). CONCLUSION: Tissue impedance was on average lower along the Pericardium meridian, but not along the Spleen meridian, compared with their respective controls. Ultrasound imaging of meridian and control segments suggested that contact of the needle with connective tissue may explain the decrease in electrical impedance noted at the Pericardium meridian. Further studies are needed to determine whether tissue impedance is lower in (1) connective tissue in general compared with muscle and (2) meridian-associated vs. non meridian-associated connective tissue

    Anesthesia of Epinephelus marginatus with essential oil of Aloysia polystachya: an approach on blood parameters

    Get PDF
    This study investigated the anesthetic potential of the essential oil (EO) of Aloysia polystachya in juveniles of dusky grouper (Epinephelus marginatus). Fish were exposed to different concentrations of EO of A. polystachya to evaluate time of induction and recovery from anesthesia. In the second experiment, fish were divided into four groups: control, ethanol and 50 or 300 mu L L-1 EO of A. polystachya, and each group was submitted to induction for 3.5 min and recovery for 5 or 10 min. The blood gases and glucose levels showed alterations as a function of the recovery times, but Na+ and K+ levels did not show any alteration. In conclusion, the EO from leaves of A. polystachya is an effective anesthetic for dusky grouper, because anesthesia was reached within the recommended time at EO concentrations of 300 and 400 mu L L-1. However, most evaluated blood parameters showed compensatory responses due to EO exposure.Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul/Programa de Apoio a Nucleos de Excelencia (FAPERGS/PRONEX) [10/0016-8]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [470964/2009-0]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazil (CAPES)info:eu-repo/semantics/publishedVersio

    The Systems Biology Research Tool: evolvable open-source software

    Get PDF
    BACKGROUND: Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput) experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. RESULTS: We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT) to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. CONCLUSION: The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability), to facilitate cooperation among researchers, and to expedite progress in the field of systems biology
    corecore