22 research outputs found

    Growth hormone responsive neural precursor cells reside within the adult mammalian brain

    Get PDF
    The detection of growth hormone (GH) and its receptor in germinal regions of the mammalian brain prompted our investigation of GH and its role in the regulation of endogenous neural precursor cell activity. Here we report that the addition of exogenous GH significantly increased the expansion rate in long-term neurosphere cultures derived from wild-type mice, while neurospheres derived from GH null mice exhibited a reduced expansion rate. We also detected a doubling in the frequency of large (i.e. stem cell-derived) colonies for up to 120 days following a 7-day intracerebroventricular infusion of GH suggesting the activation of endogenous stem cells. Moreover, gamma irradiation induced the ablation of normally quiescent stem cells in GH-infused mice, resulting in a decline in olfactory bulb neurogenesis. These results suggest that GH activates populations of resident stem and progenitor cells, and therefore may represent a novel therapeutic target for age-related neurodegeneration and associated cognitive decline

    Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    Get PDF
    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions

    May measurement month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension (vol 40, pg 2006, 2019)

    Get PDF

    Cognitive control of intentions for voluntary actions in individuals with a high level of autistic traits

    Get PDF
    Contains fulltext : 102383.pdf (publisher's version ) (Open Access)Impairments in cognitive control generating deviant adaptive cognition have been proposed to account for the strong preference for repetitive behavior in autism. We examined if this preference reflects intentional deficits rather than problems in task execution in the broader autism phenotype using the Autism-Spectrum Quotient (AQ). Participants chose between two tasks differing in their relative strength by indicating first their voluntary task choice and then responding to the subsequently presented stimulus. We observed a stronger repetition bias for the harder task in high AQ participants, with no other differences between the two groups. These findings indicate that the interference between competing tasks significantly contributes to repetitive behavior in autism by modulating the formation of task intentions when choosing tasks voluntarily.11 p
    corecore