51 research outputs found

    Proton pump inhibitors and risk of gastric cancer: a population-based cohort study

    Get PDF
    Proton pump inhibitor (PPI) use leads to hypergastrinaemia, which has been associated with gastrointestinal neoplasia. We evaluated the association between PPI use and risk of gastric cancer using population-based health-care registers in North Jutland, Denmark, during 1990–2003. We compared incidence rates among new users of PPI (n=18 790) or histamine-2-antagonists (H2RAs) (n=17 478) and non-users of either drug. Poisson regression analysis was used to estimate incidence rate ratios (IRRs) adjusted for multiple confounders. We incorporated a 1-year lag time to address potential reverse causation. We identified 109 gastric cancer cases among PPI users and 52 cases among H2RA users. After incorporating the 1-year lag time, we observed IRRs for gastric cancer of 1.2 (95% CI: 0.8–2.0) among PPI users and 1.2 (95% CI: 0.8–1.8) among H2RA users compared with non-users. These estimates are in contrast to significant overall IRRs of 9.0 and 2.8, respectively, without the lag time. In lag time analyses, increased IRRs were observed among PPI users with the largest number of prescriptions or the longest follow-up compared with H2RA users or non-users. Although our results point to a major influence of reverse causation and confounding by indication on the association between PPI use and gastric cancer incidence, the finding of increased incidence among PPI users with most prescriptions and longest follow-up warrants further investigation

    A New Strategy to Identify and Annotate Human RPE-Specific Gene Expression

    Get PDF
    Background: To identify and functionally annotate cell type-specific gene expression in the human retinal pigment epithelium (RPE), a key tissue involved in age-related macular degeneration and retinitis pigmentosa. Methodology: RPE, photoreceptor and choroidal cells were isolated from selected freshly frozen healthy human donor eyes using laser microdissection. RNA isolation, amplification and hybridization to 44 k microarrays was carried out according to Agilent specifications. Bioinformatics was carried out using Rosetta Resolver, David and Ingenuity software. Principal Findings: Our previous 22 k analysis of the RPE transcriptome showed that the RPE has high levels of protein synthesis, strong energy demands, is exposed to high levels of oxidative stress and a variable degree of inflammation. We currently use a complementary new strategy aimed at the identification and functional annotation of RPE-specific expressed transcripts. This strategy takes advantage of the multilayered cellular structure of the retina and overcomes a number of limitations of previous studies. In triplicate, we compared the transcriptomes of RPE, photoreceptor and choroidal cells and we deduced RPE specific expression. We identified at least 114 entries with RPE-specific gene expression. Thirty-nine of these 114 genes also show high expression in the RPE, comparison with the literature showed that 85% of these 39 were previously identified to be expressed in the RPE. In the group of 114 RPE specific genes there was an overrepresentation of genes involved in (membrane) transport, vision and ophthalmic disease. More fundamentally, we found RPE-specific involvement in the RAR-activation, retinol metabolism and GABA receptor signaling pathways. Conclusions: In this study we provide a further specification and understanding of the RPE transcriptome by identifying and analyzing genes that are specifically expressed in the RPE

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    Effects of UV photodegradation on subsequent microbial decomposition of Bromus diandrus litter

    Full text link
    Aims: Photodegradation acts as a direct contributor to litter decomposition in arid and semi-arid ecosystems. However, its indirect effects are unclear. Does photodegradation condition litter for subsequent microbial decomposition? Methods: We conditioned litter of Bromus diandrus with ambient or reduced ultraviolet (UV) radiation and three periods of exposure (summer, summer-winter, and 1 year) in a California annual grassland. We then investigated how field UV exposure affected subsequent microbial decomposition of litter using a controlled laboratory incubation. Results: Surprisingly, microbial decomposition was decreased by UV radiation when the exposure occurred during summer but was unaffected by UV treatment for exposure longer than summer. Litter lignin concentrations did not explain these results, as they were not affected by UV radiation for any of the exposure periods. However, for the summer period exposure, UV radiation was associated with decreased litter N concentration, which corresponded with lowered subsequent microbial activity. Conclusions: Our results suggest a new mechanism through which photodegradation interacts with litter microbial decomposition: photodegradation may decrease microbial decomposition through inhibition of microbial N immobilization. Our results imply that solar radiation can interact with litter N cycling dynamics to influence litter decomposition processes

    Author Correction: Global roll-out of comprehensive policy measures may aid in bridging emissions gap.

    Get PDF
    The original version of this Article contained an error in Fig. 4b, in which a variable (IMAGE 3.0) for one scenario for the year 2050 was incorrectly reported/placed. This has been corrected in both the PDF and HTML versions of the Article
    • …
    corecore