41 research outputs found

    Discovery of species-wide tool use in the Hawaiian crow

    Get PDF
    Funding from the Biotechnology and Biological Sciences Research Council, UK (BBSRC; grant BB/G023913/2 to C.R., and studentship to B.C.K.), the University of St Andrews (C.R.), JASSO (S.S.), and the Royal Society of London (M.B.M.). Funding for thecaptive ‘Alala propagation programme was provided by the U.S. Fish and Wildlife Service, Hawai‘i Division of Forestry and Wildlife, Moore Family Foundation, Marisla Foundation, several anonymous donors, and San Diego Zoo Global.Only a handful of bird species are known to use foraging tools in the wild1. Amongst them, the New Caledonian crow (Corvus moneduloides) stands out with its sophisticated tool-making skills2, 3. Despite considerable speculation, the evolutionary origins of this species’ remarkable tool behaviour remain largely unknown, not least because no naturally tool-using congeners have yet been identified that would enable informative comparisons4. Here we show that another tropical corvid, the ‘Alalā (C. hawaiiensis; Hawaiian crow), is a highly dexterous tool user. Although the ‘Alalā became extinct in the wild in the early 2000s, and currently survives only in captivity5, at least two lines of evidence suggest that tool use is part of the species’ natural behavioural repertoire: juveniles develop functional tool use without training, or social input from adults; and proficient tool use is a species-wide capacity. ‘Alalā and New Caledonian crows evolved in similar environments on remote tropical islands, yet are only distantly related6, suggesting that their technical abilities arose convergently. This supports the idea that avian foraging tool use is facilitated by ecological conditions typical of islands, such as reduced competition for embedded prey and low predation risk4, 7. Our discovery creates exciting opportunities for comparative research on multiple tool-using and non-tool-using corvid species. Such work will in turn pave the way for replicated cross-taxonomic comparisons with the primate lineage, enabling valuable insights into the evolutionary origins of tool-using behaviour.PostprintPeer reviewe

    Phosphoinositide 3-Kinaseγ Controls the Intracellular Localization of CpG to Limit DNA-PKcs-Dependent IL-10 Production in Macrophages

    Get PDF
    Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ−/−). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ−/− cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ−/− cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ−/− cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ−/− cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages

    The Ecological Conditions That Favor Tool Use and Innovation in Wild Bottlenose Dolphins (Tursiops sp.)

    Get PDF
    Dolphins are well known for their exquisite echolocation abilities, which enable them to detect and discriminate prey species and even locate buried prey. While these skills are widely used during foraging, some dolphins use tools to locate and extract prey. In the only known case of tool use in free-ranging cetaceans, a subset of bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia habitually employs marine basket sponge tools to locate and ferret prey from the seafloor. While it is clear that sponges protect dolphins' rostra while searching for prey, it is still not known why dolphins probe the substrate at all instead of merely echolocating for buried prey as documented at other sites. By ‘sponge foraging’ ourselves, we show that these dolphins target prey that both lack swimbladders and burrow in a rubble-littered substrate. Delphinid echolocation and vision are critical for hunting but less effective on such prey. Consequently, if dolphins are to access this burrowing, swimbladderless prey, they must probe the seafloor and in turn benefit from using protective sponges. We suggest that these tools have allowed sponge foraging dolphins to exploit an empty niche inaccessible to their non-tool-using counterparts. Our study identifies the underlying ecological basis of dolphin tool use and strengthens our understanding of the conditions that favor tool use and innovation in the wild

    Evaluation of different pre-slaughter light intensities and fasting duration in broilers

    No full text
    The aim of this study was to determine the effects of different levels of light intensity (0, 5 or 20 lx) and different pre-slaughter feed fasting duration (3, 6, 9, 12 and 15 hours) on the parameters body weight loss, carcass yield, commercial cuts yield, water carcass retention, bacterial counts and breast meat pH. A number of 72 broiler chickens at 45 days of age (Cobb 500 strain) was distributed in three chambers, in a total of 24 broilers per chamber. The results showed that feed fasting significantly influenced (p<0.05) body weight losswhen broilers were submitted to 9 hours of fasting. Broilers kept in the chamber with 0 lx presented higher body weight loss compared with other light intensities. The results showed an increase in carcass yield (p<0.05) as pre-slaughter feed fasting duration increased, but it did not affect commercial cuts yield or breast meat pH (p>0.05). The presence of feed in the crop and gizzard did not depend on light intensity, but was affected by pre-slaughter feed fasting duration. Bacterial counts decreased with feed fasting duration (p<0.05)
    corecore