2,780 research outputs found

    Axion monodromy in a model of holographic gluodynamics

    Full text link
    The low energy field theory for N type IIA D4-branes at strong 't Hooft coupling, wrapped on a circle with antiperiodic boundary conditions for fermions, is known to have a vacuum energy which depends on the θ\theta angle for the gauge fields, and which is a multivalued function of this angle. This gives a field-theoretic realization of "axion monodromy" for a nondynamical axion. We construct the supergravity solution dual to the field theory in the metastable state which is the adiabatic continuation of the vacuum to large values of θ\theta. We compute the energy of this state and show that it initially rises quadratically and then flattens out. We show that the glueball mass decreases with θ\theta, becoming much lower than the 5d KK scale governing the UV completion of this model. We construct two different classes of domain walls interpolating between adjacent vacua. We identify a number of instability modes -- nucleation of domain walls, bulk Casimir forces, and condensation of tachyonic winding modes in the bulk -- which indicate that the metastable branch eventually becomes unstable. Finally, we discuss two phenomena which can arise when the axion is dynamical; axion-driven inflation, and axion strings.Comment: 43 pages, 10 figures. v2: references update

    Resonances in J/ψϕπ+πJ/\psi \to \phi \pi ^+\pi ^- and ϕK+K\phi K^+K^-

    Full text link
    A partial wave analysis is presented of J/ψϕπ+πJ/\psi \to \phi \pi ^+\pi ^- and ϕK+K\phi K^+K^- from a sample of 58M J/ψJ/\psi events in the BES II detector. The f0(980)f_0(980) is observed clearly in both sets of data, and parameters of the Flatt\' e formula are determined accurately: M=965±8M = 965 \pm 8 (stat) ±6\pm 6 (syst) MeV/c2^2, g1=165±10±15g_1 = 165 \pm 10 \pm 15 MeV/c2^2, g2/g1=4.21±0.25±0.21g_2/g_1 = 4.21 \pm 0.25 \pm 0.21. The ϕππ\phi \pi \pi data also exhibit a strong ππ\pi \pi peak centred at M=1335M = 1335 MeV/c2^2. It may be fitted with f2(1270)f_2(1270) and a dominant 0+0^+ signal made from f0(1370)f_0(1370) interfering with a smaller f0(1500)f_0(1500) component. There is evidence that the f0(1370)f_0(1370) signal is resonant, from interference with f2(1270)f_2(1270). There is also a state in ππ\pi \pi with M=179030+40M = 1790 ^{+40}_{-30} MeV/c2^2 and Γ=27030+60\Gamma = 270 ^{+60}_{-30} MeV/c2^2; spin 0 is preferred over spin 2. This state, f0(1790)f_0(1790), is distinct from f0(1710)f_0(1710). The ϕKKˉ\phi K\bar K data contain a strong peak due to f2(1525)f_2'(1525). A shoulder on its upper side may be fitted by interference between f0(1500)f_0(1500) and f0(1710)f_0(1710).Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.

    First Measurements of eta_c Decaying into K^+K^-2(pi^+pi^-) and 3(pi^+pi^-)

    Full text link
    The decays of eta_c to K^+K^-2(pi^+pi^-) and 3(pi^+pi^-) are observed for the first time using a sample of 5.8X10^7 J/\psi events collected by the BESII detector. The product branching fractions are determined to be B(J/\psi-->gamma eta_c)*B(eta_c-->K^+K^-pi^+pi^-pi^+pi^-)=(1.21+-0.32+- 0.23)X10^{-4},B(J/ψ>gammaetac)B(etac>K0Kˉ0pi+pi)=(1.29+0.43+0.32)X104,B(J/\psi-->gamma eta_c)*B(eta_c-->K^{*0}\bar{K}^{*0}pi^+pi^-)= (1.29+-0.43+-0.32)X10^{-4}, and (J/\psi-->gamma eta_c)* B(eta_c-->pi^+pi^-pi^+pi^-pi^+pi^-)= (2.59+-0.32+-0.48)X10^{-4}. The upper limit for eta_c-->phi pi^+pi^-pi^+pi^- is also obtained as B(J/\psi-->gamma eta_c)*B(eta_c--> phi pi^+pi^-pi^+pi^-)< 6.03 X10^{-5} at the 90% confidence level.Comment: 11 pages, 4 figure

    In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing

    Get PDF
    In this study, an in situ chemical synthesis approach has been developed to prepare graphene–Au nanocomposites from chemically reduced graphene oxide (rGO) in aqueous media. UV–Vis absorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were used to demonstrate the successful attachment of Au nanoparticles to graphene sheets. Configured as field-effect transistors (FETs), the as-synthesized single-layered rGO-Au nanocomposites exhibit higher hole mobility and conductance when compared to the rGO sheets, promising its applications in nanoelectronics. Furthermore, we demonstrate that the rGO-Au FETs are able to label-freely detect DNA hybridization with high sensitivity, indicating its potentials in nanoelectronic biosensing

    Luminescent properties of Bi-doped polycrystalline KAlCl4

    Full text link
    We observed an intensive near-infrared luminescence in Bi-doped KAlCl4 polycrystalline material. Luminescence dependence on the excitation wavelength and temperature of the sample was studied. Our experimental results allow asserting that the luminescence peaked near 1 um belongs solely to Bi+ ion which isomorphically substitutes potassium in the crystal. It was also demonstrated that Bi+ luminescence features strongly depend on the local ion surroundings

    52-week efficacy and safety of telbivudine with conditional tenofovir intensification at week 24 in HBeAg-positive chronic Hepatitis B

    Get PDF
    Background and Aims: The Roadmap concept is a therapeutic framework in chronic hepatitis B for the intensification of nucleoside analogue monotherapy based on early virologic response. The efficacy and safety of this approach applied to telbivudine treatment has not been investigated. Methods: A multinational, phase IV, single-arm open-label study (ClinicalTrials.gov ID NCT00651209) was undertaken in HBeAg-positive, nucleoside-naive adult patients with chronic hepatitis B. Patients received telbivudine (600 mg once-daily) for 24 weeks, after which those with undetectable serum HBV DNA (<300 copies/mL) continued to receive telbivudine alone while those with detectable DNA received telbivudine plus tenofovir (300 mg once-daily). Outcomes were assessed at Week 52. Results: 105 patients commenced telbivudine monotherapy, of whom 100 were included in the efficacy analysis. Fifty-five (55%) had undetectable HBV DNA at Week 24 and continued telbivudine monotherapy; 45 (45%) received tenofovir intensification. At Week 52, the overall proportion of undetectable HBV DNA was 93% (93/100) by last-observation-carried-forward analysis (100% monotherapy group, 84% intensification group) and no virologic breakthroughs had occurred. ALT normalization occurred in 77% (87% monotherapy, 64% intensification), HBeAg clearance in 43% (65% monotherapy, 16% intensification), and HBeAg seroconversion in 39% (62% monotherapy, 11% intensification). Six patients had HBsAg clearance. Myalgia was more common in the monotherapy group (19% versus 7%). No decrease in the mean glomerular filtration rate occurred in either treatment group at Week 52. Conclusions: Telbivudine therapy with tenofovir intensification at Week 24, where indicated by the Roadmap strategy, appears effective and well tolerated for the treatment of chronic hepatitis B. Trial Registration: ClinicalTrials.gov NCT0065120

    Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction

    Full text link
    Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low costs remains a grand challenge. Here, we report a hybrid material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen-doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high performance non-precious metal based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.Comment: published in Nature Material
    corecore